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Hello and welcome back to this week 5 lecture of NPTEL course on thermal physics. Now for

last previous week, we discussed about transport properties and Brownian motion. This week we

will be starting from altogether different topic. So, for the first part  of this week we will  be

talking about specific heat of solid. Now we have already discussed about specific heat in gases.

And we have found out that classical equipartition theorem is applicable whenever we have to

explain the behavior of specific heat of gases. And we have seen that different types of degrees

of freedom. For example, the translational degrees of freedom, the rotational degrees of freedom

and the vibrational degrees of freedom unfolds at different temperature regime.

Now when it comes to the specific heat of solids, the situation is slightly different. Now because

first of all the specific heat of solid people try to measure specific heat for quite some time, I

mean the techniques the first generation colorimetric techniques were already established when

the this kinetic theory was came into action I mean came into picture.  So, around 1819 two

French scientist Dulong and Petit, they have measured a specific heat for a variety of solids and

came with a general observation.
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So, let us start from there and then we will go into the more detailed theory. So, what Dulong and

Petit originally saw in 1819 is this. So, they measured a variety of solids that specific heat for a

variety of solids that also includes the solid oxygen and solid nitrogen, yeah. And so, it mostly

what they have found out is the values are mostly concentrated around this 25 Joules per mole

inverse per calorie per mole per calorie mark. I mean it is not exactly the mean value but it is

somewhere around this number where all the specific heat of all the common solids are found.

Now at that time, the kinetic theory 1819 is where kinetic theory was not established. So, the

concept  of  universal  gas  constant  and all  were not  properly established at  that  time.  It  was

already known probably I do not know exactly but it was before kinetic theory. So, later on it

was found out that this 25 Joules per mole inverse per calorie inverse is very close to the value

3R, that meet 3 times the universal gas constant which is the numerical number is probably 24.9

Joules per mole inverse per K inverse but which are very close to each other.
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So, then once this  correlation  was made;  classical  equipartition  theory was used to put  give

support for this Dulong-Petit law. Now what happens in a solid? In liquid or in gas in fluids for

example, we have already seen that there are different types of movements possible, we can have

translation, we can have rotation, we can have vibration, but what about in a solid material? In a

solid material, there are the solid the atoms or molecules are fixed in their equilibrium position

inside the lattice.

Even if for a disordered solid their position is not changing with respect to each other. Now, but

one thing that is present there which is also commonly present in gas and liquid, that vibration,

because of the available  thermal  energy the small,  the tiny atoms or molecules they execute

thermal vibration around their  equilibrium or mean position.  Now this is a very well  known

phenomena because atoms we know that for any finite temperature the atoms or molecules or

any particle for that fact is bound to vibrate.

So, this vibration if we go by classical equipartition theorem, these vibration has three different

directions,  it  can  vibrate  along  x,  y  and z,  that  means  three  independent  directions.  So,  all

together and we know for one independent vibration, there are two normal modes that we have

discussed  in  details  already,  so  I  am not  going  into  the  details  of  that  anymore.  So,  three

independent vibrations corresponds to six normal coordinates normal modes for that factor. So,

each normal mode according to classical equipartition theory contributes total of half kT.



So, if  we look at  the thermal  energy per  mole of any solid  from this  classical  equipartition

theorem, we see this will be Na Avogadro's number basically that is the number of atoms or

molecules per mole times 6, that is the number of degrees of freedom times half k b T which is

again k b times N A is equal to R. So, E is equal to 3 RT, R being the universal gas constant.

So, if we compute the C v that is heat capacity for fixed volume, this is nothing but dE dT which

is 3R which is very equal I mean almost equal to 25 Joules per mole inverse but calorie inverse

which  according to  Dulong and Petit  is  the specific  heat  for  most  of the common solids  as

observed here. I mean look at the y scale, it is 3R, 3.4R, 2.8R, so, more or less in this region.

So,  this  is  the phenomenological  law that  was proposed by Dulong and Pettit  based on the

observation. So, and later on the kinetic classical equipartition theorem which is also strongly

correlated with the kinetic theory, it has found support from that law but is it universally true.

First of all we see that they are not exactly classical equipartition theorem suggests that every

specific heat of every solid should be exactly 3R and we already see there is a huge distribution.

And classical equipartition theorems says nothing about the temperature variation of specific

heat.
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Now when we look at  the data  and this  data  I  have taken from a book actually  one of the

textbooks of this course. So, and this is given in calories per mole inverse per k inverse and the

conversion between calorie and Joule is 2.39, so it can be easily converted to joules. So, that is

well I am not exactly looking at that at this moment. So, now so what is important is? So, what is

this 3R? 3R is approximately 6 calories. So, we see that for silver A g it is at 273 Kelvin it is

almost 6 and at 50 Kelvin, it goes down to 2.7.

Similarly for aluminum which has a atomic weight of 27.1 in solid state at 273, the specification

is close to 6, whereas that 50 Kelvin it goes down to 0.9. Carbon is even worse even at room

temperature even at 0 degrees centigrade the specific heat Oh! by the way these measurements

were  at  room temperature.  So,  approximately  20,  22,  23  degrees  centigrade.  Now here  the

temperature is mentioned clearly 273 and 50.

Here, I do not think it was mentioned, I have taken this from Wikipedia. I do not think it was

clearly mentioned, it was just mentioned room temperature but we can always cross check that.

So, now calcium for example, it is 6.18 which is expected to be around 6 but once again at 50

Kelvin it goes down. So, what we found out from this table that Dulong and Pettit law is not

universal,  for  some  atoms  or  molecules  it  is  valid,  close  to  0  degrees  Centigrade  or  room

temperature.

For example, for silver, for aluminum, maybe for calcium, copper, lead, for this probably we are

somewhere close. But even for those at low temperature there is a significant  deviation,  say

except for lead when the measurement was carried out at 50 Kelvin, lead stay somewhere close

to 5.17 which is OK I mean not very far from 6. But all other falls drastically from the value that

is expected from classical equipartition theory.

So,  we  make  2  observations  here,  first  of  all  that  Dulong-Petit  law  is  although  it  is  a

observational  law,  it  is  not  universal  by  any  means  even  at  room  temperature  or  higher

temperature but at low temperature it fails miserably anyway. Now if I am not very Dulong-Pettit

actually mentioned that in the statement of the law that the specific heat should be around this

particular number at a high temperature.



But they have not  defined what  is  high temperature  you can call  room temperature  as high

temperature,  you  can  call  200  degrees  Centigrade  are  high  temperature.  So,  this  is  just  a

phenomenological observation, it has it is own importance because this was the first systematic

observation  and which was later  supported by it  was  found out  that  it  can be explained by

equipartition theorem but in general this law has many loopholes.
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Now when we plot this we see something more interesting, we see that for all the solids, all the

known solids, once again this is adapted from a textbook. So, for all the known solids, C v goes

to 0 as T goes to 0. Now the slope of this curve or the change in C v with temperature is very

different for different solids. So, that is why for diamond which is carbon actually the rate of

increment is slow whereas for aluminum it is slightly higher for lead it is super fast as compared

to diamond.

So, finally it all levels off, so we can see there is some kind of asymptotic behavior, so initially it

starts slowly then it goes up and then it levels off. So, this leveling off is somewhere close to 3R,

right, that is universal in nature but the temperature at which it levels off is actually different for

different materials. So, what we gather from this is the temperature 273 Kelvin is already high

for maybe for silver, may be for lead but it is not high enough for carbon that is what we have

gathered.



Because if we look at the temperature variation probably carbon will also level off to this 3R

value at a much higher temperature, If it is still stays in a solid form at that temperature, that is a

different question altogether but we can see. And also see there is a change C v goes to 0 as T

goes to 0. And this change if you remember in order to explain the specific heat of gases, we

have also seen this systematic changes.

But  that  change  was  slightly  different  because  that  we  can  explain  that  up  to  a  certain

temperature  the  translational  modes  are  activated.  And then as  the  temperature  goes  up the

rotational  modes are activated.  So, there is  kind of a  quantum jump but smooth not exactly

quantum jump but it is a smooth transition but it is from one step to the other step. So, we have 1

step for 5 by 2R and then the next step is 7 by 2R, the next step is 9 by 2R like this, we have seen

that for hydrogen.

But in here there is no such step, it is a smooth variation. So, the classical existing so those steps

can be explained very easily by classical equipartition theorem because we can see that, okay.

So,  the  translational  modes  and  at  higher  temperatures  the  rotational  modes  at  even  higher

temperature vibrational modes they systematically being activated. So, these are all explainable

by classical equipartition theory but this type of a smooth variation what we see here is cannot be

explained by classical theory.

Also a very interesting observation is at low temperature side at temperature which where it

becomes almost close to temperature close to absolute 0, the variation is C v goes as T cubed.

So, these are the two things and classical theory as I have already mentioned, classical theory has

failed to explain this. So, we need to have a better theory in order to explain the specific heat of

solids.
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Then came once again the genius of Einstein. So, more and more we talk about this man more

we realize why he is called a genius and probably the greatest physicist of all time. Between

1905 and 1907 how many theories from how many different fields he has worked on in physics

is amazing. He has worked on we all know about his work on special relativity, in photoelectric

effect.  We recently  learned about his  theory on Brownian motion which is  one of it  is  first

fluctuation dissipation theorem.

Now  we  see  that  he  also  tried  to  explain  the  specific  heat  of  solids  in  the  lights  of

electromagnetic vibration in a cavity. So, basically he correlated the vibration in a solid, or the

molecular  vibe  or  atomic  vibration  in  a  solid  with  the  electromagnetic  radiation  inside  a

blackbody radiation inside a cavity which is basically the Planck’s constant Planck’s treatment of

blackbody radiation. So, what Einstein did was Einstein directly applied the Planck’s treatment

to  explain  photoelectric  Planck’s  treatment  of  quantum  of  wave  packet  to  explain  the

photoelectric effect.

In a similar manner, he also used the same concept in order to explain the heat capacity of solids.

So, what Einstein assumed that each atom inside a crystal lattice or inside a solid oscillates with

someone same characteristics frequency nu above about it is mean position. So, whatever may be

the amplitude of vibration, he is not worried about that because according to the Planck's concept

the amplitude does not matter, the energy is associated with the frequency of vibration, right.



And actually  it  was Planck to introduce the concept  of quanta of energy h nu is the energy

associated with the photon with the with frequency nu.

So,  what  Einstein  suggested  that  it  is  a  monoatomic  characteristic  vibrational  frequency for

associated which is the characteristics vibrational frequency for a given solid. So, 1 given solid

every  atom vibrates  with  the  same  frequency  and  that  frequency  is  a  characteristic  of  that

particular solid. So, in carbon it will be some frequency, in lead it will be some other frequency,

in aluminum it will be some other frequency but whatever it is, it is the same for all the atoms.

So, that was his primary assumption.
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Now once again if  you are familiar  with the concept  of blackbody radiation,  you know that

actually Planck calculated the average energy per quanta and that was E bar which is given by E

bar is equal to h nu by e to the power h nu by kT minus 1. So, I am not going into the derivation

of this, this will be a different story altogether and towards if we have time to cover blackbody

radiation in this course probably I will derive this relation for you but not right now.

So, and as we know that  there are total  of N a number of particles  per mole and there are

altogether 3N a modes of vibration because each atom can have 3 modes of vibration. Altogether

there are 3N a times epsilon numbers of this is the total energy of the system. This is the total



energy of the system. So, we can simply write it in a slightly different manner and this is 3N a k

b T.

So, what we can do is, we can just introduce a k b T here and we can divide this h nu by k b T

and we can write h nu by k b T is equal to x and then E is equal to 3 N A k b T x into e to the

power x minu 1. Once again N a times k b is R, so we can write this as 3RT x divided by e to the

power x minus 1. So, that  is very straightforward the only assumption we have here is that

energy per vibration is h nu by e to the power h nu by kT minus 1.

And finally we have 3. So, here actually what instead of putting degrees of freedom is 6 into half

k b T. I think there is a confusion of a factor of half which I check in and discuss once again in

the next lecture, maybe there is a factor of half that I have missed on. But anyway the analysis

will not change. So, this is 3RT e to the power x into x divided by x minus 1. Now in order to

compute C v, what we have to do is we have to take derivative with respect to temperature. So,

this is d dT of 3 RT x divided by e to the power x minus 1. Now please remember x is a function

of the temperature itself because x is what? x is equal to h nu by k b T.
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So, this derivative will be 3R times x into e to the power x minus 1 plus T times 1 by e to the

power x minus 1 x e to the power x e to the power x minus 1 square dx dT. Now what is dx dT?

dx dT is minus h nu by kT square which is minus x by T. So, you substitute here my dx dT is



equal to minus x by T and we get C v is equal to 3R x e to the power x minus 1 minus x divided

by e to the power x minus 1 plus x square e to the power x divided by e to the power x minus 1

whole square.

So, once again you see the first 2 terms are identical, they cancel out nicely and what we are left

with is C v is equal to 3R x square e to the power x e to the power x minus 1 square, which we

call E x Einstein function and then C v is equal to 3R times x. So, this is the Einstein's equation

for specific heat of solid. Now what we can do is if you look at it x is equal to h nu by k b T and

we can define theta E which is equal to h nu by k, then we can write this x is equal to theta E by

T.
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Then this Einstein function E x can be written as E of theta E by T, so theta is called the Einstein

temperature. And it is not only the temperature, but it also discusses talks about a characteristic

frequency. Because you see theta E is equal to h nu by k, h by k is a constant, h divided by k

whatever the value of this that is a constant. Now nu is the characteristics frequency and this for

different solids theta E will be different.

So, we will talk about theta E later, when we will be solving problems, so whatever we have got,

so finally what we have got? We have got C v is equal to 3R times E x. So, let us examine the

function E x in different limits. So, we take 1 limit when T is much, much greater than theta E



then in that case x is equal to theta E by T which is much, much less than 1. So, E x is equal to

limit x tends to 0 x square e to the power x divided by e to the power x minus 1 whole square.

Now when x is small what we can do is we can just expand the exponential function in power

series of x and we can written terms only up to second order of x maybe not beyond that. That is

a typical practice, sometimes we keep first order also but here first order will not help because

we have already have an x square here. So, we have decided to keep up 2 terms of the order of x

square. So, what do we have here?

We have x square times 1 plus x plus x square by 2 factorial actually it should be 2 factorial but

2 factorial and 2 factorial by 2 is the same thing, so 2 and 2 factorial is the same thing anyway.

So, 1 plus x plus x square by 2 like this and in the denominator we have 1 plus x plus x square by

2 plus and then there is a minus 1, sorry the writing is not very clear, I hope you can see this

there is a minus 1 here and there is a whole square, okay, let me try to just modify this a bit.

So, I think you can see it better now, so x square. So, for the upper series actually e to the power

x  does  not  contribute  anything  because  we  already  have  x  square  outside  here.  So,  it  will

multiply with 1 will give you x square it will multiply with x will give you x cube, so only the

first term will survive and we will have x square. Similarly there is a minus 1 here and there is a

minus 1 here these 2 will cancel out and only the first term will survive.

Because only that itself will give you x square, the next term will give you x to the power 4

which is very, very small, so of course we can ignore that. So, it will be like approximately is

equal to x square by x square is equal to 1. So, at very high temperature, what is high? High

when the temperature T goes way beyond theta E the characteristics temperature which we call

the Einstein temperature and that is the definition of high temperature.

So, now we can define a theta E for each solid and we can say whether the temperature of

measurement is high or not with respect to this theta  E. So, also it  does not only give us a

characteristic frequency but also gives us a reference temperature to work with for each solid.



So, we see that when E becomes, in the high temperature limit E becomes 1 and we have C v is

equal to 3R which is nothing but the Dulong-Petit law.

So, we see the formulation of Einstein, it could actually explain the observation by Dulong and

Petit that although it does not follow classical equipartition theorem. But at higher temperature

higher as in high as compared to the characteristics temperature, it becomes equivalent to the

result from the classical equipartition theorem which is given by Dulong and Petit. Next step is

the low temperature regime. See what happens at low temperature? Look at this function at low

temperature.
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So, let me try to write this, at low temperature x will be, so T is much, much less than theta E.

So, x is equal to theta E by T which is much much greater than 1. So, what happens to E x? E x

we have x square e to the power x, so x square e to the power x divided by e to the power x

minus 1 whole square. So, when this happens e to the power x becomes much, much greater than

1 and this can approximately written as x square e to the power minus x, why?

Because we have an e to the power x from here and we have, so this 1 can be ignored and we

have e to the power 2 x from here, so 2x goes up, so we have x square e to the power x. So, C v

goes as 3R x square e to the power minus x. So, this is what we get from the Einstein’s theory at

low temperature  and let  me tell  you this  is  very wrong because  here  the  dominant  term is



exponential. So, if I try to plot this as a function of temperature, so let us say this is 3R this is my

3R, so at high temperature it will follow the Dulong-Petit law it will be something like this, at

low temperature it will fall much faster because it is falling exponentially, so this is falling as e

to the power minus x.

See between x square and e to the power minus x of course e to the power minus x is  the

dominating  term.  So,  that  is  where  at  low temperature  and experimentally  we have  already

explained that at low temperature it follows the T cubed behavior. And here what do we see? It

follows an exponential behavior which is e to the power x means e to the power minus theta E by

T. So, it follows exponentially decaying function of T.

So, which of course is not the case. So, this is my temperature, this is my C v and e to the power

-theta E by T, so which is of course not correct. So, that is where the limitation of Einstein's

theory comes into picture. And in the next lecture what we are going to do is, we are going to

talk about another theory that explains that takes care of this discrepancy which is given by

Debye few years after Einstein.

And  tomorrow's  lecture  we  will  be  talking  about  Debye’s  theory  on  specific  heat,  how  it

circumvents the problem of this low temperature specific heat. And we will try to solve some

problems regarding the Einstein theory and Debye theory of specific heat, so till then thank you

and goodbye.


