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Hello and welcome back to one more lecture on this NPTEL course on thermal physics. Now

today is lecture number 14 and we will start from where we have left in lecture number 13.

(Refer Slide Time: 00:41)

So, let us first look into this 2 problem sets in the classroom problem set of week 3 and we have,

yeah. So, we have problem number 3 and 4 to begin with. So, the first problem is the thermal

conductivity of helium is 8.7 times the thermal conductivity at argon which has an atomic weight

of 39.99 under STP. Also under this condition the molar specific heat at constant volume of 2

gases are identical. Calculate the ratio of diameters under hard sphere approximation at STP.
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Now, in order to solve this problem we have to go back to the fundamental relation that the

conductivity is actually proportional to or thermal conductivity ratio is given. Now we have to go

back to this fundamental relation that k is actually proportional to 1 over root m d square. Now

this 1 over root m d squared proportionality can might as well be written in terms of capital M d

square as we have discussed in one of the lectures. We just have to multiply the numerator and

the denominator with a suitable constant, so that is the Avogadro number and we can write this

as root over 1 by capital M d square.

So, this we can use in order to compute the ratio of the 2 thermal conductivity which is in this

particular form d of argon divided by d of helium whole square is equal to k of helium divided

by k of Argon multiplied by the root 4 that is the atomic weight of helium and root 40 that is

atomic weight of Argon. So, it will be now this ratio of k H and k r is already given as 8.7 in the

problem. So, this ratio of diameter square is actually 8.7 divided by root over of 10 which is

approximately  2.75.  Now  if  we  take  the  root  then  we  get  the  ratio  of  the  diameter  is

approximately 1.66.

So, it is a little tricky problem because we have to use the formula or we have to use this relation

that  k  is  proportional  to  1 over  m d square.  But  once we get  to  that  the rest  calculation  is

extremely  straightforward,  right.  Now for  problem number  4,  the coefficient  of  viscosity  of

helium is 18.6 into to the power minus 6 Newton second per meter square, capital M is 4 kg per



mole. That means basically it is another way of saying that the molecular weight of helium is 4

and C v is equal to 12.5 into to 10 to the power 3 joules per kilo mole inverse per Kelvin inverse.

So, from this data we need to calculate the thermal conductivity of helium at 0 degree centigrade.

So, what is given? Given is the coefficient of viscosity and some other parameters and of course

C v is given. So, all we have to do is, we have to use the relation between the coefficient of

viscosity and thermal conductivity in order to solve this problem.

(Refer Slide Time: 04:36)

So, let us have a look at it. See, once again what are the data given eta is equal to this M is equal

to 4, C v is given and we recall that k M by eta C v is equal to 1. So, this is the relation that we

have derived in the class and we are just going to use this relation. Now from this relation all we

have to do is, we have to write k is equal to eta C v by M, we have to put the numbers and we get

k is equal to 5.8 into 10 to the power minus 1 joules second inverse meter inverse Kelvin inverse.
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And if you recall this is nothing but your Watts. So, this unit is same as Watts per meter per

Kelvin. And then there is a third problem which I will not do it for you, so let us look at problem

number 5.

(Refer Slide Time: 05:49)

I will just leave it to you, we will have a discussion on this problem in the forum but I am not

going to solve it for you. After the; discussion in a combined manner if we cannot come to a

conclusion then only I will solve it for you maybe in one of the live sessions. So, in a vacuum

flask the gap between two concentric glass cylinder is 4 mm. We all know that the in there is a

vacuum jacket in a vacuum flask and the gap between these two is given.



Calculate the value of pressure p at which the thermal conductivity value between the wall will

drop below it is value at 1 atmosphere. At what value of p will thermal conductivity be 10 to the

power -3 times the value at 1 atmosphere 10 to the minus 3 times? Take lambda is equal to 100

nanometers at 1 atmosphere. Now we go back to the expression for thermal conductivity once

again where is it? I am not going to solve it but I will just give you a we will just discuss it

anyway.

(Refer Slide Time: 07:18)

So, this is the expression for thermal conductivity from the last lecture. And what do we see

here?
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We have determined the dependences that we see that case independent of pressure. And if you

recall  once  again  I  have  mentioned  many  times  that  had  very  high  and  very  low  P  this

independence does not hold. Now this is the case in this problem what we are going to discuss is

the case where the pressure becomes really, really low. So, what happens? So, let us I will just

discuss the phenomena, you have to solve it yourself.

(Refer Slide Time: 08:05)

So, we have a flask, vacuum flask. So, let us say this is my flask, so this is the outer wall and we

also have an inner wall, I hope this drawing you can understand what I am trying to draw, it is

not very accurate drawing but you can at least understand. So, the problem is, so this is a vacuum

sealed wall. So, between the inner wall and the outer wall we have a distance of 4 mm. Now, so

basically  at  the beginning let  us  assume that  one of  these  sides  are  open and this  is  that  1

atmosphere. Now in 1 atmosphere what is given?

It is given that the mean free path is 100 nanometers and so this is what is given. Now what

happens is let us, assume that we close this surface and basically we start evacuating from here.

So, we start we connect it to some pump, yeah, and we start reducing the pressure. Now thermal

conductivity does not change up to a point when lambda is comparable to 4 millimeters not

nanometer, 4 millimeter. So, if we simply plot just to give you an idea what happens is, if we

have pressure versus lambda what was the dependence, if you recall? We have to go back to

lecture 12 for that, we have to go back to lecture 12.



(Refer Slide Time: 10:40)

So, once again this is oh! sorry, sorry not lecture 12 my mistake. We do not need actually. We

remembered that lambda is equal to 1 by root 2 n sigma and p is equal to n kT. So, actually this

can be written as lambda is equal to 1 by root 2 p sigma and they will be k B T here. So, if we

keep the  temperature  constant,  so  lambda  and p  they  are  inversely  proportional.  So,  as  the

pressure decreases lambda increases when we have discussed it many times.

So,  it  will  keep decreasing  up or  as  the  pressure  decreases  lambda will  increase  and it  can

increase only up to a value of 4 nanometers beyond that your curve will be flat, why? Because

the maximum distance or maximum mean free path is once again I have repeated it many times, I

am repeating it once again. The maximum allowed mean free path is equal to the dimension of

the container.

So, this is where lambda is approximately equal to 4 millimeter which is the dimension of the

container  in  this  particular  case  and  beyond  that  lambda  becomes  flat  then  the  thermal

conductivity starts reducing with pressure because in the expression of thermal conductivity also

there is an n dependence. So, what is the expression for thermal conductivity? You see this is one

third lambda c bar n C v m.



So, as long as the lambda and n both are varying with pressure this n dependence cancels out.

But when lambda becomes constant here when the lambda becomes constant k depends on n,

reducing n the number density reducing pressure will reduce the number density and it will start

decreasing. So, using this concept, so you can find out a pressure at which k will start decreasing

as a function of pressure.

So, on the same plot if I add another axis which discusses the k dependence, dependence of k

with pressure, right. So, what happens is, for that particular axis I mean for the same range k

remains constant up to this value and then it will start decreasing? So, that is where the flux is

actually insulating. A flux is insulating if and only if the thermal conductivity of this, of the

thermal jacket insulating jacket is much less as compared to the one in 1 atmosphere pressure.

So, I  think you have got enough hint and now you can solve this  problem, please keep the

discussion  alive  in  forum,  if  you cannot  solve  this  problem even after  this  I  will  provide a

solution.

(Refer Slide Time: 14:18)

So, now let us go back to the lecture and let us talk about the density gradient. When we have a

density gradient at the system and we can compute something called the diffusion coefficient.

So, once again we go back to the picture where we have two adjacent layers. Now in this case

one layer is dense, the other layer is light, what do I mean by dense and light? That means the

one layer actually has more packed molecules as compared to the other layer.



Now what happens is molecules will come from move freely between these layers, so that once

again it will be driven towards equilibrium that is density equilibrium in this particular case,

which in a more technical term we call the chemical equilibrium. So, in this case when we have a

density gradient the quantity H is equivalent to n. So, the expression for net flux in this case

along the gradient the net flux gamma will be given by one third c bar lambda dn dz.

(Refer Slide Time: 15:33)

As opposed to the other if you go back to the original expression it was lambda is equal to of

course there is a minus sign I have just omitted the minus sign, sorry. So, there should be a minus

sign here as well, so it will be minus one third n c bar lambda dH dz, that was the original

expression. But because in this case H is equivalent to n, we have not written n out explicitly

here, so the expression becomes -one third c bar lambda dn dz.
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Now, when we compare this with the Flick’s law of diffusion which is J is equal to minus D dA

dn dz and we are working in the case when dA is equal to 1, we get D is equal to one third c bar

lambda. Now what is this D is called? The diffusion coefficient and it is once again not directly

dependent on n but if we recall that lambda is proportional to 1 over n, okay. Then we see that D

is also proportional to 1 over n and n and p they are directly proportional to each other.

So, in that way D is inversely proportional to the pressure. So, as pressure decreases the diffusion

coefficient increases, right. So, it is something similar to the dependence of lambda because D

and lambda are proportional. Also we know that the quantity c bar which is the mean velocity is

dependent on the root over of temperature. And of course this dependence is when we have a

fixed temperature.  And when we have a fixed pressure with temperature the c bar the mean

velocity depends on root T whereas lambda depends on T.

Once again if you recall when we substitute for n is equal to p by k B T. In the expression of

lambda T goes in the numerator and lambda is directly proportional to T. So, the dependence of

the diffusion coefficient D on temperature is T to the power 3 half for a fixed T. Now once again

we can compute the dependence of D on the molecular parameters like d and m, this d here being

the  dimension  of  the  molecule  the  diameter  of  the  molecule  and  m being  the  mass  of  the

molecule.
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Now this dependence if we compute it carefully, we see that c bar is equal to 8 kT by pi m,

whereas lambda is equal to 1 by root 2 n pi d square. So, when temperature and pressure both are

fixed, D is proportional to 1 by root over m d square. So, this is the dependence of molecular

dimension  on  the  coefficient  of  diffusion.  Also  the  1  by  p  dependence  has  been  verified

experimentally, just given an illustrative plot of the diffusion constant as a function of 1 over p.

As you see this D is proportional to 1 over p, so D versus 1 over p should be a straight line and

experimental data also suggests that D is linearly varying with 1 over the pressure, right.

(Refer Slide Time: 19:19)

Now let us compute as before the units and dimensions. Now in this case we are not going back

to the Flick’s law but it is very straightforward the dimension calculation as D is given by one



third lambda c the dimension of D is the dimension of lambda multiplied by dimension of c bar

which is simply length square per unit time. So, the SI units of diffusion coefficient will be meter

square per  second.  So,  this  is  exactly  like I  mean this  is  very simple  unit  meter  square per

second.

(Refer Slide Time: 20:00)

And also there is a relation that exists between the coefficient of viscosity and the diffusion

coefficient. Of course both of them are transport properties, so there has to be a relation. So, eta

is equal to one third m n c bar lambda is equal to one third rho c bar lambda and D simply equal

to one third c bar lambda. So, we can see that eta is equal to rho D and D times rho by eta is

equal to 1 which is a constant.

Once again when we will be discussing towards the in the next lecture we will be discussing the

fundamental dependence or rather we will discuss about little more advanced theories, we will

see that D rho by lambda, sorry, D rho by eta is not exactly 1 but it is a constant nonetheless,

fine.  Now with  this  we move  to  the  just  a  minute  anything  else.  So,  we will  move  to  the

classroom problem set  and we have  two problems to  solve,  that  is,  problem number  6 and

problem number 7.
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So, this 2 rather 3 problems 6, 7 and 8, this 3 we have to solve in order to get an insight on this

diffusion phenomena.  So, let  us focus on problem number 6.  So,  we calculate  the diffusion

coefficient of air by taking means speed of 460 meters per second and mean free path of 6.8 into

10 to the power minus 8 meters. Now, this is probably the most, easy problem that we get in the

discussion of diffusion coefficients.

(Refer Slide Time: 21:47)

Because this is simple application of the relation that D D rho by eta one third lambda times c or

c times lambda. So, we just have lambda, we just have c and we put these values here side by I

mean one after the other and we get D D rho by eta 9.8 into 10 to the power minus 6 meter



square per second. So, this is more of a it is a problem, so that you get a feel for the number what

are the typical range of this diffusion coefficient. So, this is why this problem is chosen.

So, you see this is almost 10 to the power minus 5 meter square per second because 9.8 is almost

10. So, we can call it 10 to the power minus 5 meter square per second. For problem number 7,

we have calculate the mass of nitrogen that will diffuse through an area of 10 to the power 1

meter square, sorry it should be 10 to the power minus 2 actually, my mistake, I will correct this.

So, it will be 10 to the power minus 2 meter square in 10 seconds, if the concentration gradient is

1.26 kg per meter to the power minus 4 and lambda is 10 to the power minus 7 meters c bar is

480 meters per second.

Now what we have to compute here is the mass of nitrogen that will diffuse through and given

area in given time. So far the quantity of interest  has been the flux, now we have to that is

basically the number of molecules that is going through an unit area in unit time. Now what we

have to do? We have to calculate the mass that is going through a different area in given time

and this is not very difficult as we have already realized.

All we have to do is we have to multiply the flux with the mass, yes, phi m which is the mass

flux which is simply m times gamma, please remember that gamma is the flux that is the net flux

towards the gradient. Of course if there is a gradient only the relation will hold. So, m times

gamma, so that means one third c bar m lambda dn dz, so this is the expression for mass flux that

is going in the direction of the or rather in the opposite direction of the gradient, I have just put a

mod here.

So, to avoid the negative sign, it does not matter we know that mass will flow opposite to the

gradient because this is where nature comes in, nature wants to equilibrate everything. So, will

be a minus sign, I have just avoided that to avoid any confusion. So, phi m is simply m times

gamma.
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So, this is basically the mass flux that means mass flowing through unit area in unit time. So, phi

m we can compute because c bar is given which is the mean velocity and lambda is given which

is the mean free path and this one the gradient dn dz is also given. So, let us go back to the

problem again see dn dz. So, dn dz that is given in the units of kg per meter to the power 4

because n has an unit of kg per meter cube.

That will be divided by once again by a meter, so it will be minus kg meter to the power minus 4,

lambda is given, c bar is given. So, we can very easily compute phi m which is 2.02 into 10 to

the power minus 5 kg per meter square per second, so this is the proper unit. Now what we have

to find out is mass that is passing through a given area in 10 seconds. So, all we have to do is, we

have to multiply this  quantity by the area and the time.  So, M that is the total  mass that  is

actually flowing through that area is phi m multiplied by the time T that is 10 seconds multiplied

by the area that is 10 to the power minus 2 meter square.

And the unit will be you see meter square, meter square cancels, second, second cancels, so unit

will be simply kg. And after putting all these numbers we get M equilibrate 2.02 into 10 to the

power minus 6 kgs that is if I express it in grams it will be 10 to the power minus 3 grams, so it

will be milligrams actually. So, 2 milligram mass will be lost if we keep a small hole of the area

10 to the power minus 2 meter square in a container of nitrogen for 10 seconds. So, this is a very

nice problem in order to give you a real feel of how much muscles we will loss in a given time.



And we will come back to more of this type of problems, so we will be discussing effusion next.

So, the last problem of the class which is probably number 8, the coefficient of viscosity and

diffusion coefficient of oxygen is given by 1.5 into 10 to the power, sorry this should be 10 to the

power minus 5 N s meter square and 1.22 into 2 once again this is a mistake. So, it should be 10

to the power minus 5 meter square per second, respectively.

If the mean molecular velocity is 440 meters per second, calculate lambda. So, what is given?

Here the coefficient  of viscosity  eta  is  given,  diffusion coefficient  D is  given and the mean

molecular velocity is given, oh! sorry actually it is a printing mistake here. So, basically first we

have to calculate, so that there is another part I will correct that in the final version. We first have

to calculate the density rho and then we have to calculate lambda.
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So, we first have to calculate density rho and rho is given by eta by D, eta is 1.95 into 10 to the

power minus 5, D is 1.22 into 10 to the power minus 5. So, we see calculation of rho is very

straightforward, we just have to divide one by the other and 10 the power minus 5 and minus 5

nicely cancels  out,  leaving behind,  1.6 kg per meter  cube.  So, this  gives you the density of

oxygen, so 1.6 kgs per meter cube.



Next we have lambda which can be computed from the relation that D is equal to one third

lambda c, so lambda is equal to 3D by c bar which is just putting these numbers will give you 8.3

into 10 to the power minus 8 meters. So, that is where we stopped in today's lecture and the next

and the last topic for the transport properties is the effusion properties. Now, what is effusion? I

will just give you a very brief idea.

See, we have so far discussed about diffusion, when the dimension of the let us say we have just

discussed a problem that there is a hole in a container and there is a measurable density gradient

and  the  molecule  is  diffusing  out,  molecule  is  going  out  of  that  hole.  In  case,  when  the;

dimension of the hole becomes so small that the gas assembly does not feel a density gradient or

a pressure gradient.

So, density gradient essentially  means a pressure gradient,  because n and p they are directly

linked. So, if the hole is really, really tiny, then the gas assembly as a whole will not experience a

pressure gradient. But still because there is an opening and if the opening is anything more than

the molecular diameter of course that is when we call it an opening not before that. So, some

molecules will definitely escape out of the container.

So, that means the molecules are going out each, let us say what molecules are escaping the

container  one  by  one  without  passing  the  knowledge  to  the  other  molecules.  So,  this  is  a

phenomena we call the effusion. In the next class or the last class for this week, we will be taking

up effusion. And of course we will have some more concluding remarks in order to end the topic

of transport phenomena, till then thank you.


