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Hello and welcome back to the week 3 lecture of this NPTEL course on thermal physics. So, in

today's lecture we are going to talk about transport processes. Now so far whatever we have

discussed about the gas assembly, this has been an equilibrium phenomenon. Now what do you

mean by equilibrium? Of course equilibrium will be more formally represented very soon but let

me tell you equilibrium means when inside the system there is no gradient present. What do we

mean by gradient? Gradient essentially means differences.

Now before we proceed to the content of today's lecture let  me tell  you that there is a very

common misconception between or mix up between an equilibrium and a steady state. Now what

is  an  equilibrium  and  what  is  a  steady  state?  Let  me  try  to  explain  to  you  very  briefly.

Equilibrium is once again what is equilibrium I will tell you in a moment but let me give you an

example of a steady state which is not equilibrium.

So, let us assume that there is a drum under a tap and water is falling inside the drum and after

certain time the drum will be filled to it is top and then the water will start pouring out from the

sides. Or you can think of there is a hole at the bottom of the drum, let us assume that there is a

hole at the bottom of the drum, so water is coming in and water is going out. Now somehow if

we can make these 2 rates equal, the rate at which water is coming in from the tap and rate at

which the water is flowing out of that hole.

If we can make them equal then what happens? The water level inside the drum does not change

with time and that essentially means not only the amount of water changes. But also after a

certain time all  the system will  have the equal in the same temperature all  the water that  is

coming  in  and  that  is  going  out  will  have  equal  temperature,  so  that  system is  in  thermal

equilibrium.



Of course system does not have any pressure gradient, so it will be in a kind of a mechanical

equilibrium which is once again I will define in a moment in a more formal way. But I think you

understand the situation that water is pouring into the drum, water is going out of the drum. But

let me tell you this is not a chemical equilibrium system, so let us look into it formally.

(Refer Slide Time: 03:20)

So, what is equilibrium? Equilibrium as I said already that there is no gradient present. Now

there are 3 main types of equilibrium, one is the thermal equilibrium in which there is no all the

system is at the office sorry but I do not know what I did oops! just a minute. So, the thermal

equilibrium is a state in which all the system is at the same temperature. Now if we look back to

the example of this drum which will. Let me just try to draw this for you then you will have a

better feel yeah.
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So, we have a drum, very bad drawing, just a minute let me try to work on it, yeah this looks

better. So, this is my drum of water and then we have a tap here that is pouring water inside some

sort of a tap arrangement. So, I hope you understand and at the same time there is a small hole in

the system. So, what is happening? Water is coming in, pouring in and water is going out and in

between of course there is a fixed water level.

And as I have said that after a certain time we will be achieving a steady state where the amount

of water that is pouring out. Basically we have to adjust the flow rate, so that the amount of

water that is pouring in will be the amount of water that is pouring out per unit time. And then

what happens is this entire system will be after some time at equal temperature, the temperature

of the water that is coming in, the temperature of the water that is sorry I should use a different

colour probably, yeah.

Temperature here and the temperature the water that is going out, so these are all  in perfect

thermal equilibrium. Now but that is not all, equilibrium means we also have to have chemical

equilibrium  and  mechanical  equilibrium.  Now  what  is  chemical  equilibrium?  Chemical

equilibrium is I do not know why this is gone, then density I do not know why it is gone but I

think we can manage, yeah.



So, density is uniform throughout the system. Now, this is one way of saying this also there is

other way of looking at it that says chemical equilibrium is when there is no, so basically if there

is no particle movement in the system but which is not the case for the example we are taking.

What is happening? Just a minute I do not know, density this is fine. So, mechanical equilibrium

is when the mechanical forces within the systems are balanced, so there is no acceleration.

Now in a thermodynamic system the mechanical equilibrium is realized when the velocity is

uniform, let us assume a gas assembly. When we have a gas assembly we assume that there is

Maxwell's Boltzmann distribution for example that there is no velocity gradient. So, basically if

we take randomly if we select randomly 1 region in the container and we measure the average

velocity we will  look at  the velocity  distribution,  we get exactly the same distribution if we

measure it in a another portion of the container.

So, that means the velocity distribution in 2 parts of the container are equilibrium are equal that

is what we call the mechanical equilibrium. Now let us examine the system in question once

again how? The software crashed, give me a second, we will open it again. So, the system in

question, we see of course it is in thermal equilibrium, the temperature is uniform throughout the

system. But then we see that there is a molecular flow, the molecule is coming in and molecule is

going out.

So, that means there is a density gradient present, that is why the molecule is I mean it is not

exactly in a density gradient in it is traditional sense. But of course there is a flow of molecule

which of course is not the case when the system is in chemical equilibrium. And then we talk

about mechanical equilibrium, now if we just focus on this portion, so the moving particle or let

us say this portion where the water is going out.

This outgoing water definitely I mean close to this exit, the velocity will be more as compared to

the rest of the system. So, the system although it is in thermal equilibrium and it is in a steady

state, so that the entire description of the system is not changing, the height of the water level is

not changing by any means it is not in chemical or mechanical equilibrium, it is fine. So, now we



understand that what is the meaning of equilibrium, so basically we are talking about these 3

different types of equilibrium.

Also there is something called a phase equilibrium which will be discussing towards the end of

this  lecture  series  when we will  be discussing phase rule  and all.  But  in  general  if  there  is

mechanical thermal and chemical equilibrium then we call the system thermodynamic system to

be in equilibrium which is not the case here. So, this is a system which is in it is at steady state

for sure but not in equilibrium.

(Refer Slide Time: 10:54)

Now let  us  move on,  whatever  we have  discussed  so  far  in  terms  of  Maxwell,  well  speed

distribution  law the mean free path.  Well,  mean free path is  not  exactly  a very equilibrium

phenomena  but  of  course  we  have  assumed  that  the  overall  the  equilibrium  the  velocity

distribution is more or less uniform. So, these are all equilibrium distribution or equilibrium

phenomena.

Now if somehow the equilibrium is disturbed in a fluid assembly, here we talk about fluid in

general which we know could be liquid, could be gas but in general here we treat fluid and ideal

gas as equivalent terms to each other. Now, so let me state it again when the equilibrium in a

fluid system is disturbed then we have something called the transport phenomena. Now what are

the 3 major transport phenomena we are going to investigate in this lecture? First of all we will



be talking about viscosity which is basically transport of momentum from one part of the liquid

or one part of the fluid in question to the other part.

(Refer Slide Time: 12:18)

Then we will have 2 other things, one is the thermal conductivity which deals with the transport

of thermal energy from one part of the system to the other part.

(Refer Slide Time: 12:29)

And finally we will be talking about diffusion which is the transport of mass from one part of the

fluid to the other part. So, let us look at this 3 systematically one by one. So, for viscosity we

have which once again is a transport of momentum. The origin of this viscosity and as I have

said already that you go back to the definition of equilibrium, when equilibrium exist I mean it is



not exactly the definition of equilibrium but it is a condition that when equilibrium exist there is

no gradient present.

So, whenever there is a gradient there is equilibrium being disturbed and we have one of these 3

transport properties. For example whenever there is a velocity gradient that means the system is

not in mechanical equilibrium; so that means it has different parts of the system exhibits different

average velocity that means there is a velocity gradient. So, that is when the basically different

we can assume as if different layers of the layer of the fluid is moving with different speed that is

when we have viscosity.

And the definition of viscosity is the tangential force per unit area per unit velocity gradient. So,

if the viscous force is F we can write according to Newton's law of viscosity we can write F is

equal to minus eta dA du dz where dA is the elemental area we are talking about, force on

elemental area dA, eta being the coefficient of viscosity and du dz is the velocity gradient along z

direction.  Of  course  we  are  talking  about  only  one  dimensional  cases  and  these  all  the  3

phenomena we are talking about, it will be derived and discussed in one dimensional case only.

But it can be very well generalized to 3 dimensions as well. Now next is the thermal conductivity

and the origin of thermal conductivity is e when there is a temperature gradient into the system.

So, that means when we have 2 parts of the system at 2 different temperatures, then from the

hotter part the heat is being transferred to the colder part. And that is obvious we have seen that

even in a solid if we have 1 metal rod, 1 end is in a oven the other end I mean the there is a

uniform.

Let us say this is a metal rod, metal body, so if this end is put on a oven the other end slowly

heats up and of course because of the heat dissipation the temperature change in this part is more

and temperature change in this part is less. But let me tell you the same thing happens in a fluidic

system as well. If we have a gas assembly which has higher temperature in one side and lower

temperature in the other side, what happens is gas molecules starts flowing from the hot end to

the cold end taking excess energy from the hot part to the cold part.



So, that eventually an equilibrium is established, so that is where we come up with this definition

of thermal  conductivity,  that  is  thermal  energy. So, basically  the thermal  conductivity  is  the

coefficient that we are going to measure from the fundamental principle. So, the definition of

thermal conductivity is the thermal energy flowing per unit area per unit temperature gradient

among the system.

So, if we have Q being the total amount of heat that is being transferred then that is equal to -k or

sometimes it is written with a Latin letter kappa minus k dA dT dz which is called the Fourier's

law  of  heat  transfer.  When  dT  dz  once  again  is  the  temperature  gradient  along  positive  z

direction.  Once  again  we  are  talking  about  only  one  direction  but  it  can  be  very  well  be

generalized to 3 dimensions.

And lastly we have diffusion which is actually the transport of matter. What is diffusion? If we

have instead of a temperature gradient, if we have a concentration gradient what do we mean by

concentration gradient? Let us say I think in the very first day of discussion of mean free path I

have given you 1 example where I have a small perfume bottle, I open it up and eventually the

smell propagates among along this room, everywhere in the room you could you can smell it.

That happens when in your household some Puja is going on or some fragrant sticks are being

let, so eventually the entire house is full of that smell and that is very obvious. And that is where

the concentration gradient comes into picture, when I open the perfume bottle at this point in

close to the face of the bottle or mouth of the bottle then the concentration of those gas particles,

the fragrance particles are very high whereas outside that or otherwise it is almost 0.

So, now what happens? It starts propagating in an attempt to equilibrate the situation;  every

system  wants  to  drive  itself  towards  equilibrium.  So,  high  concentration  always  wants  to

propagate along in different directions, so that the concentration gradient is does no longer exist.

So, that is the basic nature we have or for any natural system this is the nature and this is why we

have something called the diffusion.



There is a law Flick's law of diffusion which says J the diffusion current is equal to minus D dA

dn dz, where d is the elemental area once again, dn dz is the density gradient. dn just a minute, I

do not know what happened all of a sudden everything is gone, I do not know . Anyway I think

you already got this something is going on here, some software issue, anyway. So, let me try to

load this once again and then I will show you clipless, fantastic, nothing is lost, everything is

there.

So, once again the definition of diffusion is the molecular flux flowing or the diffusion current

molecular  flux flowing per  unit  area per  unit  density  gradient  is  the coefficient  of  diffusion

which is marked with D here. So, all the coefficients are marked with red let it be eta, let it be k

oh! what is happening? I do not know, something is not right, fine it is there. So, let it be eta, let

it be kappa and let it be D.

Now you notice that all the definition there is a negative sign, in here there is a negative sign, in

here there is a negative sign, here there is a negative sign, now what does it mean? This negative

sign means the flow is opposite to the gradient, so that means if the temperature is increasing in

this direction. So, let us assume this is my direction of temperature gradient, so T is T 2 here and

we have T 1 here, so that T 2 is greater than T 1. So, heat is flowing opposite to the temperature

gradient.

So, of course you realize that dT dz if this is my z direction, so dT dz is positive along positive z

direction, whereas the temperature is flowing in the opposite direction. So, that is why this is the

origin of this negative sign. So, now it is time that we formally look into this 3 phenomena and

try to formalize it, what do I mean by formalizing? I want to start from the fundamentals of mean

free path and finally come up with expression of these 3 gradients that is d eta and k, so that we

can express this quantity in terms of the fundamental parameters of the system. So, let us start.

(Refer Slide Time: 22:15)



So, I would take some take some time to explain this particular figure here. Here what we have is

a xyz coordinate system, now let us focus on this middle part, we have a layer which is leveled

by O O prime. On top of that we have 1 layer which is a-a prime and at the bottom there is one

layer which is b-b prime. So, basically what I did here? It is kind of a semi empirical kind of

treatment, it is not exactly molecular level like we did for the kinetic theory of gases so far.

But it is more of a semi I mean kind of an empirical view I mean it is not exactly a macroscopic

view, not exactly a microscopic view. What we have in mind is that these 3 layers represents 3

distinct regions in a fluid assembly or gas assembly let us call it. Now each of this, inside each of

this  layer  there  is  no  gradient.  So,  the  density,  the  velocity  of  gas  molecules  everything  is

uniform in this layer.

Upper layer is our hot layer, what do we mean by hot layer? We talk about a physical quantity

which is H, H could be anything, H could be density, H could be temperature, a H could be

velocity, anything. At present we just make it very general, we call it H. So, that H this layer O-

O prime has the value of that particular quantity as H, whereas the upper layer a-a prime has a

value of this particular quantity as H plus l dH dz, this is the z axis.

So, the gradient is along z axis, so l being the perpendicular separation or the shortest distance

between these 2 planes. And similarly there is a plane below that is the cold layer, whatever



quantity we are talking about. Let us think about in terms of temperature, so if this temperature is

T, this  temperature is  T plus l  dT dz and this  temperature  is  T minus l  into dT dz,  so this

temperature is less compared to the upper layer.

So,  that  means  the  velocity  gradient  is  along  this  direction  upwards  and this  has  been  our

assumption  while  writing  all  this  expression.  For  example  when  we  are  writing  D,  we  are

assuming dn dz is a density gradient along plus z direction. So, we have these 3 layers and how

does this transport takes place? The molecules from one layer may travel to the other layer or the

adjacent layer without suffering a collision.

So, this is the assumption that the molecules or this layers the separation between these 2 layers

are such that one layer but the molecules from one of this layer let us assume from this layer or

let us say from this layer, so they start traveling towards this layer and they reach there without

suffering a condition. Similarly cold molecules from this layer travels or rather I would say they

always travel from this to this.

So, the molecules from this layer travel in this direction without suffering a condition. So, thus

once again this is kind of a semi classical picture semi macroscopic picture, we are not exactly

considering microscopic level,  no, we are not exactly  considering macroscopic level,  we are

considering a mixture of both. So, now in order to such phenomena to take place that means the

molecules from each layer traveling to the adjacent layer without suffering a condition.
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There has to be a limit or there has to be an estimate of this length scale l, we will do that in a

moment. But first let us quickly understand that physical quantity H is transported, so whatever I

have said is written here is transported by molecules between adjacent layers. Now the zeroth

order approximation for that would be if  we just  take l  is equal to z,  so that the planes are

separated by a maximum of lambda in.

So, that we can have uninterrupted transport of molecules between 2 adjacent layers, so this is

our zeroth order approximation. This which is also once again we have seen that previously that

zeroth order approximations are good, it gives you something reasonable. But let us do it in a

slightly elaborate way which we call the 1st order approximation.
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You remember that we had this particular geometry when we have a small elemental volume dv

which is hitting a small surface area dA on the container wall when we calculated molecular

flux. And we use exactly the same geometry to calculate the average distance along z direction.

So, our average distance z bar is given by integration 0 to infinity z dN divided by integration 0

to infinity dN, where dN is that number of molecule that will start from this elemental volume dv

and  end  up  on  this  elemental  surface  area  dA.  And  if  you  remember  we  already  have  an

expression for the same which is given by n P c dv dt d omega by 4 pi e to the power minus r by

lambda.

Now this expression we have already derived, so I am not going to explain this to you over and

over again. But you can always look back to lecture number 9 where this derivation was met in

details. So, all we have to do is we need to compute this integration. Now in order to compute

this integration we have to write dv in terms of the elemental volume in a three dimensional

spherical polar coordinate system which is r square d r sine theta d theta d phi and we write z is

equal to r cos theta.

(Refer Slide Time: 29:35)



So, once we do that and of course d omega, I forgot d omega has to be written as dA cos theta

divided by r square. Now once we do that we see that many terms from the numerator and the

denominator are in common because both will have n P c dt and the dA and divided by 4 pi

which will be cancelling out. So, I just kept this in order to show you but these terms are nicely

cancelled out, leaving behind 0 to infinity r e to the power  minus r by lambda dr.

And 0 to pi by 2 sine theta cos square theta d theta in the numerator and in the denominator 0 to

infinity e to the power minus r by lambda dr because r is not there in the denominator. And of

course there is 1 cos theta which is missing because of this, we have z is equal to r cos theta in

the numerator and which is not present in the denominator. So, we have sine theta cos theta d

theta.

Now we have already computed these integrals, this integral if you remember will give us what

will it? That what will give us? It will give you one third, this integral will give you half, it was

all  derived  in  the  previous  lecture,  this  integration  will  give  you lambda  and this  is  a  new

integration I just did it by integration by parts. And you see that the first term cancels out nicely

and the second term leaves you lambda square. So, this is what we have in hand.
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Now if we put all these values we see that z bar is equal to lambda square times one third divided

by lambda by one third which is two third lambda. So, if l is equal to a maximum of two third

lambda then particles can travel between adjacent layers without suffering a condition. So, let us

go back to this picture once again.

(Refer Slide Time: 31:50)

If we have a distance l is equal to two third lambda and l is already here l is equal to this is equal

to two third lambda, then and only then we have uninterrupted transport between these 2 layers.

But once again please remember that this is an averaged out phenomena, we can have even if we

have 2 adjacent layers taken at two third lambda distance, many particles might not reach and



many particles and even if we have a length greater than l is equal to two third lambda many

particle might still reach.

But on an average the probability of maximum number of particles will reaching between these 2

layers will be uninterrupted or rather I would say the maximum distance for which maximum

number of particles will reach between one layer to the other uninterrupted is given by this two

third lambda value. So, this comes out from the 1st order approximation what that we have done.

So, we will take it up from here in the next lecture and we will try to compute the coefficients of

viscosity, diffusion and thermal conductivity starting from this point, thank you.


