Electronic Theory of Solids
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Lecture - 09

Bonding and Band Formation: N=2 solid Molecular Orbitals,
Linear combinations of Atomic Orbitals (LCAO)

As we have been discussing, we are introducing the quantum corrections to the properties of

electron gas in a solid.
(Refer Slide Time: 00:37)
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And so, the first thing that we have just shown is that, the specific heat for example, which
had a problem; because the classical theory did not meet the experimental results. This has
been corrected by introducing Pauli exclusion principle and quantum statistics. And sort of an
approximate calculation settled the matter, the two most important factors; the linearity in
temperature at low temperatures and the factor of nearly hundred or more that the actual
experimental result gives a value less than the classical value. And the both these accounts
were settled by an approximate calculation and very physical calculation also gives similar

kind of results.
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Now, and the both of these basically use quantum statistics; by quantum statistics I mean the
statistics that is Fermi Dirac statistics appropriate for electron gas. Now as I said, the
calculation that I just shown gives me a factor, gives me all the factors correctly except by

that it is only linear in temperature term is what we could get.

Now, if you want to go beyond that and want to get the numerical factors and the corrections
to T square all that correctly, then you have to account for the fact that the chemical potential
itself is a function of temperature. At zero temperature only it is equal to the Fermi level
Fermi energy and so, that correction has to be put in. And the fact that Fermi function itself

does not give you a delta function like derivative at E f should also be corrected.

So, it, so what Sommerfeld did was that, he to this general kind of integrals where you have
to solve this d some function H of E times the Fermi function f of E. The condition is that this
H of E has to vanish at epsilon, at energy is going to minus infinity; of course, that is true of
almost all physical functions. And there is also the other conditions that at very large energies
it has to be less than some powers in epsilon, so it can at best diverge at some powers of
energy. So, those are conditions that are more or less obeyed by most of the physical
quantities that we encounter. And so, that condition is not a prohibitively difficult or

restrictive condition for a physical system.

Now, let us define this quantity basically it is the H is now defined as a derivative of another
function which is K and so, one can integrate it by parts. And remember the fact that H
vanishes at the boundaries. And so, the this integral will now give me this Hof E fE d E
integral is just the second term in the integral which is minus K E del f del E; that minus is
now taken inside. As I wrote the, as I showed in the previous one that the advantage of; at 0
temperature the advantage we have is that the Fermi function f versus E at E f at E f, the

derivative has this derivative has a delta function kind of structure, the negative direction.

So, minus del fdel E is a very sharply peaked function across around the Fermi level and it is
an even function. So, this is very important that you can actually calculate and take the
derivative and see that check that it is an even function with respect to E; that means, if E
goes to minus E the function the derivative does not change. So, these two facts are going to

be used.
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So, this integral can be written as this right hand side K E times minus del f del E into d. Now
K e is expanded in a Taylor series and this about the chemical potential, ok. So, this is the
standard chemical, the Taylor series expansion, ok. So, let us go ahead and see what we do

next.
(Refer Slide Time: 05:39)
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So, this integral now can be rewritten in terms of this integral, first part up to mu which came
from the first term; remember the this term is K of mu only it is a constant term. So, that will
give me this term and because this is H is d K d remember. So, this integral will give me only

K at mu, remember that is what I should get. The other terms are important now.

Now, you see that these in this other terms this part, what has been retained is only the even
parts of epsilon minus mu to the power 2 n, 2 to the power n into 2. So, 2 n; because the odd
powers all vanish because as I said that derivative, remember the derivative is a this

derivative is of Fermi function is an even function.

So, I can only, I will even into odd over the entire minus infinity to plus infinity if you sum
will give you 0 and that is exactly what has been used here, only the even terms have been
written; which is just written below. Only even powers are written, because del f del E is an

even function of epsilon minus mu, ok.
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So, finally, you can substitute this one. So, this is just a substitution you do here this one,
sorry epsilon minus mu by K B T is substituted by x. So, that then becomes an integral where
you can term by term start integrating and that is what is being shown here. These are the
coefficients, these integrals are not yet done, but this is an integral, remember this quantity x
is a dimensionless quantity. So, whenever you have a quantity of this kind, integral these are

dimensionless integrals.

So, that is that finally, leads to a, so the temperature dependence comes out and the final
result that one gets is a result of this kind. So, this is the so called Sommerfeld expansion
which is, sorry. Look at this result. So, this result for example, this gives me minus infinity to
mu H E d E and then there are these corrections. These corrections are the order of order T
square is the second term for example which is K B T whole square into pi square by 6 into H

prime of mu.

(Refer Slide Time: 08:43)
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So, this, if you now use this Sommerfeld expansion to our problem which is the calculation of
specific heat of an electron gas, degenerate electron gas, then you will basically get this kind
of a result. So, the final result, as I said when T is not equal to 0; remember this second

equation n equal to 0 to mu g d plus whatever it is, can be used to find the value of mu also in

90



terms of n. It is can, it is often inverted to find mu in terms of n and it is correct to order T

square.

So, finally, if you do all that and carry on doing the calculation as shown here; this integral
you can this is up to E f plus the correction, the first correction to E f mu minus E f term. So,
that has been incorporated and if you do it, you can finally, get these expressions for both u
and n. As you can see they are still of the order of two order T square; beyond T squared

terms are not included.

(Refer Slide Time: 10:09)
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So, finally, you can actually make a correction, make the correction for the chemical
potentials temperature dependence, chemical potential comes out to be of this one. So,
remember see at zero temperature this is still E f, but there are corrections which are of order
T square. So, order T, linear in T there is no correction to the specific heat to the chemical
potential and beyond that the first correction appears to order T square in the chemical

potential as a function of temperature.

And it is very very small actually, even at room temperature it is less than 0.01 percent. So,
that is the reasons the correction to chemical potentials are generally ignored in most
calculations, where you do not require extremely precise results. And that is why the linear in

temperature dependence and the use of mu as E fin the approximate calculations that we did
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give us reasonably good results. And the factors of the T square dependence and in numerical

corrections are far less than this first term that we already got.
(Refer Slide Time: 11:35)
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But nevertheless for this is a historically important scheme of things, where you can

systematically go and calculate higher order temperature dependences.

So, finally, the fact the result that you get for specific heat is this from Sommerfeld
correction; this is the first term. And this term, see there you have to take a derivative of this
and this will give you the first temperature dependent correction which is linear in T. So, as

you can see that this is very very close to what I what our approximate calculation gave us.

And again if you can, if you put this free electron value g of E F equalto 3 by 23 nby2 EF
per unit volume here the small n is n by v. So, that will give you this final this boxed in red
value of the specific heat in terms of the ratio KBT by E F which again I said takes care of

the factor of hundred that we needed from the classical value.

Remember the classical value is just 3 by 2 n k B and so, you have a factor 100, one of 1 over
100 sitting here and that is exactly what we got from our previous calculation as well. But the
advantage here is that in using these expansions you can go to higher order and calculate the
corrections to chemical potential by temperature as well to order T square. You can actually

go beyond that by retaining higher terms in the expansion; but then they become more and
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more complicated and cannot be handled analytically at all. So, that is the precise scheme of
things that Sommerfeld adopted and he obtained these results correct to order T and then T

square of so, ok.

So, let us now go over to a topic which is a fairly important for what we are going to do from
now on. And that topic is the topic of bonding in solids and eventually the formation of a
band. Now to do that what I will start doing is to just pretend that I have a solid of two

hydrogen atoms.

Now, this is of course, a highly embellished version of a real solid; real solid has 10 to the
power 23 atoms and many electrons in each atom and then of course, many orbitals to
accommodate them. But, as we as [ will demonstrate a very simple calculation of formation
of a; for example, of hydrogen molecule starting from two hydrogen atoms which are far
separated initially and brought close together, this kind of an approach gives you the basic

1dea that runs behind the formation of bands.

And there are many ways one can calculate these kind of things, there are many
approximations; the simplest one is called the linear combination of atomic orbitals. And that
in the context of band structure can be it is termed as tight binding approximation. And that is
the simplest one that one actually does in most of the solids; of course, if you have bands
large number of orbitals involved, then of course; you have to do a full blown calculation

which we will come back later.

But for the moment we will just discuss the fact that when two protons with the two electrons
in hydrogen atoms come close together they form a hydrogen molecule and why should they
form it. And then carry on that idea the physical understanding they are off to the formation

of bands in a solid of very large number of atoms, ok.

So, let us just start thinking about two hydrogen atoms.
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(Refer Slide Time: 16:27)

So for example, if [ have in proton here an electron around it, another proton somewhere here
and an electron around it. Now these are of course confined, they are confined within their
orbitals. So, you can replace these two as I just to make a physical idea; let us first start with
replacing these two electrons which are here, they may be in any direction in spins may. So,

these two electrons are confined in a region of say Bohr orbit.

So, we can think of writing them just as a particle in an infinitely deep box here and here for
example. This problem is solved everywhere in quantum mechanics books, it is a first
problem you solve more or less. So, that is why I just want to bring out the physics of

formation of a molecule; why should a molecule form for example.

Now, we all know how to solve this problem we can write the Schrodinger equation and we
can then calculate the energies and so on and so forth, it is very straightforward. So, for
example, minus L by 2 to plus L by 2 and if the electron is, because this is infinite potential
the electron will be confined within the, was when the potential is zero inside. So, the we

know also that the wave function will look like this, it has to vanish at the boundaries, right.

You will have this electron here, sorry. So, let us put these electrons here and here. We also

can calculate the energy of these electrons trivially, very straightforward, because I know that
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this is the lower ground state wave function. So that means, lambda by 2 has to be equal to L,

right.

Now, K is 2 pi by lambda. So, h cross square K square. So, this is 2 pi by 2 L. So, this is pi by
L ok; h cross square K square by twice m is h cross square by twice m pi square by L square.
So, this is the energy of the ground state, the lowest state at each of this infinite potential box.

So, and this you have done in your class many times.

The now the question is, so the two electrons their energy is E g plus E g equal to h cross
square by m pi square by L square. So, this is now the total energy of the system of two
protons, two electrons with their parent protons in my blemished version of the theory, it is
two electrons confined in infinitely deep potential electrons, deep potentials ok. So, particles

in a box.

So, two such particles in a box problems I added their energies, because they do not contact
each other, they do not see each other; there is no connection between these two. So, the total
energy is this. Now, the question is what happens if I bring one close to the other if one

approaches the other. So, let us see what we get.

(Refer Slide Time: 20:51)
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So, now once they start coming closer; of course, the actual hydrogen atom, the potential is

not infinite. So, the electron is in a finite potential. So, there is some leak of the wave
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function beyond this and there will be some overlap between this wave functions; this nuclei
that are sitting here, here and here they will also start talking to the other electrons, so and

then to themselves.

So, there is a mixing that takes is called mixing. So, this is, these two wave functions of the
two electrons are now going to mix. And so, in the eventual scenario when a molecule is
formed, then what one has is basically, a you can mimic it by these were both L by 2 from
minus L by 2. Now, I have minus L to plus L and both the electrons are in the, under the
influence of the two nuclei which are sitting below, they are pretty close now. So, I am
forming a molecule, trying to form a molecule. So, it is two nuclei and then the two electrons

will now go to this lowest ground state of the molecule.

Now, if I think of this again as an infinite potential problem, then I know the energy of this
system. The energy is E g now is pi square h cross square by twice m pi square by 2 L square,
right. Remember the energy that we got was, pi square by the total length square, h cross

square by twice m into pi square by total length square.

Now, I will have the same thing here, h cross square by twice m into pi square; h cross square
by twice m into pi square by the 2 L square which is h cross square by twice m pi square by 4
L square. Now both the electrons are in the same orbital now; so, this orbital total energy is

basically just 2 times, this energy which is h cross square by m into pi square by 4 L square.

So, now you can see that compared to the previous one where I had where our energy was h
cross square by m into pi square by L square. Now, we have the energy which is h cross
square by m into pi square by 4 L square. So, the energy has gone down compared to the two

independent atoms sitting far apart from each other.

So; that means, the formation of a molecule when these two electrons start talking to each
other is the most appropriate solution for this problem, because you reduce the energy. Of
course, this argument has two interesting aspects, which I do not know if you have noticed;
one is that this when I had electrons here, they could be in any direction in spin. This could
be up, this could be down or this could be down, this could be up and so on, right. So, this or

both could be up, both could be down in the respective boxes when they were not talking, but
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when they start talking and they come to the same orbital, now you do not have that choice,

ok.

So, what has happened is that, the eventual molecular or by, this is called the molecular
orbital; in this orbital the both the electrons are to be put. And, Pauli Exclusion Principle tells
us that you cannot have up and up or down and down kind of states, you can only have up

down states or down up. The electrons are indistinguishable, so up down is the same as down

up.

So, this system is now a spin singlet, it has no net moment; whereas, here in the when they
were not talking to each other, they could be in any possible states, because they are
completely different spins, right. So, they could be both off means the total moment you will
find is 1, both down total moment you will find minus 1; total moment is 1, the projection is

minus 1 and so on and so forth; up down will be 0 and down up will also be 0.

But here, there is only one choice that you have to put the electrons. So, the moment of the
electrons now are not to be seen, it is in a singlet state. The other interesting thing is that,
supposing [ was not dealing with hydrogen but say helium; helium has two electrons and two
protons of course. And then of course, I could still do the same calculation, but now I had

these two electrons in these boxes.

So, I have to put in four electrons then of course, I have to go to the next higher energy state;
and which the wave function looks like this and the energy is somewhere here. So, this is the
lower energy E g, but now I have to put two electrons in this orbital. And so, these are all

filled up, all four electrons has to be. So, this is the E excited, write it with red.

So, the few you can calculate the total energies and you will find that the there is not much
again. So, this means that this kind of treatment that I am doing is restrictive; it is two helium
atoms forming a molecule is completely different scenario that this theory will never give you
that. And so, you have to remember that this is true for situations where you I have less than

fully filled orbitals to deal with, for other cases we will take care of them separately.

But, this is just a caveat I wanted to you to remember that, for helium this kind of treatment

will not give me the lowering of energy that I was looking for in a molecule.
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So, the point that I am trying to make is that, if you have two separate energy levels of two
electrons sitting here. And if you bring them close, start approaching each other; then of
course, you will mix them, these orbitals there is an interaction coming from their nuclei. And
they also interact with each other, this right nuclei will interact nucleus will interact with the
left electron and vice versa. And so, they say Hamiltonian that you have to write which
involves terms, which are the kinetic energies of each of the electrons and then there the
terms which are the interaction between the nuclei of the two electrons and of course, finally,

the electron-electron interaction and the nucleus-nucleus interaction.

So, all that has to be written down and then one can start making approximation. And the idea
that we got from the previous calculation is that, eventually you will get states which are one
is below the state the two energies and the other is above these states. And you can now put

two electrons in this state and gain energy.

Whereas if you have to, if you have more electrons you had to put it in the upper orbital and
then you do not get much energy. This kind of a scenario which I will discuss in my next
class by writing down the Hamiltonian, it is very common in chemistry and these are called

bonding and anti-bonding molecular orbitals.
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So, you can see already that there are now, I started with two orbitals, I got two orbitals; but
there is a lowering in energy, because I could put two electrons in the bonding orbital which
is the lower energy orbital. And that leads to formation of molecules and eventually if you
increase the number of sites, number of such atoms to very large number. Then of course, you
will get band formation, where you will have all sorts all the orbitals coming in between these
all the wave functions from each of these atoms will come within this range. And there will
be 10 to the power 23 orbitals states within this range, between the bonding and the
anti-bonding orbital and you will have a so called band formation. So, that is what I will

come to in my next class.

Thank you.
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