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So, we have been doing a Ising model in the mean field theory. And, in mean field theory

what we found out is that the, there is a finite temperature at which the system becomes a say

ordered magnet, all spins in one direction with a finite magnetic moment m  sub 0.

513



(Refer Slide Time: 00:47)

So, that is what we showed here depending on whether you have above this value of Tc or

below. If you are above then you have a solution only m equal to 0. If you are below it then

you start picking up solution and as you come down in temperature, the intercept becomes

happens at a larger and larger distance and at very low temperature as you can see this

intercept will not change much because tan hyperbolic will saturate.

So, then, you are basically at a fully saturated ferromagnetic state where all spins are

completely up ok. So, at 0 temperature of course, every spin will give you plus 1. So, the total

moment will be just n all spins up ok.
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So, this analysis can be taken a bit further which is actually very relevant, because there is a

famous theory by Ginzberg and Landau where they expanded the free energy close to Tc in

terms of something called an order parameter. An order parameter is something which is 0

below Tc which is non-zero below Tc and 0 above Tc. So, that is like magnetization here,

magnetization is above Tc 0, magnetization below Tc is non-zero. So, this is a quantity by

which you can distinguish between the spontaneously ordered state and the disordered state

which is like a paramagnet.

Now, so, they what they did was that they wrote down the free energy in an approximate

manner, just wrote down as a polynomial in this order parameter and their derivatives that are

allowed by the symmetry. Nevertheless I we will not do that, but we will do something

analogous to it which is that what we will do now is to adjust expand free energy that we got

from the mean field theory to second order to fourth to order fourth order in the

magnetization and this is what you will get.

So, what you will get is F by N. So, free energy density for example, per part spin is some

constant plus this m square J tilde into beta J tilde minus 1 plus Cm to the power 4. Now, if

you look at your graph of this quantity on the right hand side constant you can just absorb and

set it to 0, absorb inside the energies. So, what you have is F versus m plot in two situations.
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Where beta J tilde is greater than 1; so, the coefficient of this m square term is positive. So,

coefficient of m square positive, greater than 0. In that case you get this first curve which is

like a parabola and then of course, this m to the power 4 term, which will make it much

steeper than a parabola. And, then there is only one minimum of this you want to minimize

the free energy that is the solution. So, m equal to 0 is the only solution, so that means; m

equal to 0 which means that it is a disordered state you are actually above your T c.

So, that is beta J tilde greater than 1. Now in the other case where beta J tilde less than 1, that

is see J tilde is 1 by kB T c; so, T less than Tc. So, this is T greater than Tc. So, in that case

you will land up with a curve which is like this, the free energy looks like this with the

minimum at m equal to 0 has now become a maximum, local maximum. And that the, the at

minima where the minimum has now gone into two sides, which is symmetric; this curve is

symmetric remember it is a even function.

So, minus m naught and plus m naught at the two minima now. So, that means, you have a

situation where you can have if I absorb the constant into 0, then I will have this kind of a

situation, plus m naught and minus m naught. So, then, you have just these two minima these

are the solutions. So, in that case m not equal to 0 equal to m not and the system is

spontaneously magnetized.

So, just by expanding the free energy and looking at the coefficient of the quadratic term in

the order parameter, this is m here is the order parameter which is non-zero below T c and 0

above T c. One can actually tell whether the system is spontaneously ordered or not. And, at

the point where this ordering takes place where the coefficient goes from positive to negative

you will have an order and that is where the T c is, that is how T c is formed in this kind of a

theory.

This is a very celebrated theory by Ginsberg and Landau which was which has actually

helped understand phase transition and critical phenomena enormously.
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So, this is again the same thing, from that one can actually do more if you set del F del m

equal to 0 del F del m equal to 0, you can find out the value of m naught. And you can see

that m naught square is proportional to T minus T c, it is just one line calculation, I leave it

for you to do. And, that means; m naught goes as T minus T c to the power half, this

exponent half in mean field theory is always half and this is called the beta exponent, this

exponent is half in mean field theory.

Similarly you can keep the magnetic field do the expansion and calculate del m del h which

gives you chi and that there you will find that chi goes as 1 by T minus T c. And that is, that

means; this exponent that means, chi goes as T minus T c to the power minus 1, so that

exponent is called gamma, that gamma exponent is 1. So, these exponents are actually

measured experimentally close to T c, this is how they behave. And in mean field theory, you

can actually find out the coefficient with these exponents and these exponents are beta equal

to half and gamma equal to 1.

This picture on the left actually shows you how greater than T c how it behaves, less than T c

how it behaves from a mean field theory you can work it out.
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And then of course, you can work out the entire graph and this is remarkable because, this is

the graph for order parameter m the magnetization here versus T by Tc. And, at T by Tc is

equal to 1 you will see the and this say this m by m naught at 0 temperature this is full m

naught, so this will be 1 and then slowly it will come down and it will come down very

rapidly close to the 0.1, so this is the 0.1 ok.

So, this is 1, that is T equal to T c. So, this is how it happens and the here if you find out m

naught as a function of T you will see that it will be T minus Tc to the power half which is

again that that exponent half close to Tc this is how it behaves. And, this is a graph you will

see in many many places in phase transition, how m goes as varies with T. And typically, in

many places you will find this T minus T c to the power half behavior and its sort of

universal in certain class of systems with I mean there are caveats, but in mean field theory it

is always t minus T c to the power half.

So, if you find a curve for an order parameter behaving like this, then you can realize that this

is like a mean field transition, mean field phase transition that is happening so, so far so good.
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Now, I want to show you something which is a very simple calculation, but this is one of the

rare cases where one can solve a model a spin model exactly. And, that is just for showing

you do not have to remember the calculations neither do you have to find out the have to

repeat and cram all these things.

Just look at the calculations it is simple, it is doable and it is a rare opportunity to do an exact

solution and that is that also reveals something remarkably interesting. So, let us just

summarize what we found from mean field theory. So, mean field results are mainly this;

there is a finite T equal to T c where spontaneous magnetization occurs, right. So, T c is

finite, where magnetic moments are finite, total moment is finite.

And the other thing is that these exponent beta of half and gamma equal to half gamma equal

to 1. So, gamma means susceptibility goes as T minus T c to the power minus gamma, that

exponent gamma is 1. Now, what I do is to solve this model in one dimension exactly and

show what happens, to contrast it with the solution that I obtain from the mean field theory.

519



(Refer Slide Time: 13:03)

Again I am repeating that you do not have to do this calculation if you like you can do it, but

it is just a very simple calculation beautiful calculation and let me show you how it is done.

So, again you go back to the model with a field and field is written as H here this is the field.

So, the model is J S i dot S j H Ising J S i S i plus 1 minus H sum over i Si. Since it is one

dimensional as I said I can write it as Si S i plus 1, no bond is now double counted.

Now, the and is the magnetic field ok. So, partition function as we all know how to calculate

is basically all possible configurations you have to sum over them and, so this is S 1 from

minus 1 to plus 1, minus 1 and plus 1, there is no continuous summation, just minus 1 and

plus 1. S 2, similarly minus 1 plus 1 and so on.

S N minus 1 to plus 1 e to the power minus beta this beta times this H, which is written here

as es of i this curly bracket means all configurations of Si so, all the S i. So, S i is E i Si is a

written here ok. So, beta I can also write this beta H Ising, minus beta H Ising. This board is

not very comfortable, but let me just try to make it simple write it again.

So, now, this is this is what you are doing. Then you can recast this partition function as is

done here. All you have done is that you have written this H, the summation over H,

summation over Si, you have represented by half Si plus Si plus 1, which means every spin is

now summed twice, but i and i plus 1 are put together. So, that is why the half comes ok.
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So, that is exactly what has been done in this, this line in this line ok. Now is the trick this

trick is was first done by Cramers and Wannier, two of the greatest physicists of the last

century and these trick implies that you write a 2 by 2 matrix defined by this, this is written

here. This is the matrix S between S and S prime, so, the matrix elements of S and S prime, S

and S prime will take values plus 1 minus 1 both right like a size S P S prime.

And, it is written as e to the power beta J see the Hamiltonian had a minus that is why you get

a plus here e to the power beta J S S prime plus half beta H S plus S prime. So, that is what

this so, this is an operator you have to take S and S prime on both sides and find out the

matrix element four the four matrix elements. So, these four are plus 1 when S and S prime

are both plus 1 they are minus 1 and one is plus 1 and the other one is minus 1 and this is

symmetric S P 1 P 1 2 is equal to P 2 1, P 1 2 is this, P 2 1 is this.

So, that matrix you can easily calculate S and S prime both for example, both positive J S S

prime. So, it is beta J and then both of them are plus 1, so 1 plus 1 divided by 2 is just H; so, J

plus H similarly for the others.

(Refer Slide Time: 18:26)

So, that is the for example, this one, plus 1 and minus 1, so this will be plus this will have

plus 1 minus 1 means minus J, this one, but the second term will vanish because, there will be

no H because this is plus 1 and this is minus 1 and similarly, when S prime is minus 1 S S is
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plus 1, this will also vanish. So, there will be no H in the off diagonal terms which is just into

the minus beta J.

(Refer Slide Time: 18:57)

So, the matrix then looks like simple it is just a 2 by 2 matrix, P equal to e to the power beta J

plus H, e to the power beta J minus H, e to the power minus beta J, e to the power minus beta

J is a symmetric matrix. Now, you can just look at look at how you can recast the summation

in the partition function on the right hand side, this is really interesting.

So, you can check for yourself you can actually do it and check it for yourself that you just

put this matrix here and you will see that this summation on the right S 1, S 2, S N is

basically S 1 P S 2, S 2 P S 3, S 3 P S 4, so on, S N minus 1 P S N ok and then SN and then

SN P S 1. Now, this last one comes from the periodic boundary condition where we have

identified SN plus 1 equal to S 1. So, it is now the spins are like on a ring.

So, this is the first spin, this is the Nth spin, so this is N this is 1 2, 3 and so on and the N plus

1 is the same as N. So, this is like a ring now the topology is a ring. This is the periodic

boundary condition that we used in Born Von Karman boundary condition as well. So, this is

just that periodic boundary condition put in here. So, this is PBC. Now the interesting thing to

note is that there are this sum for example, sum over S 2 where does S2 appear S2 appears

only here and here.
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So, I can actually take this S 2 sum somewhere here which is what I let me just do. So, I have

S 1 P then I do this S 2 sum. So, let me just do it, let me S 2 then S 3 right, P S 3, P S 3, P S

3. Now, look at this, this is just a ket and bra. So, this kind of things student, S sum over S

basically, identity from quantum mechanics.

So, that means; I can actually do it for every of these, I will I can also do for S 3 which has an

S 3 here, then P, then S four right. So, for these also I can take this S 3 sum inside and sum

over this and get identity. So, all of these will become identity except for the first one at the

last one and what are those you will be left with only S 1 S 1 P to the power N S 1 right and

that, is exactly what is shown here.

So, this summation basically reduces to a trace calculation of the matrix P to the power N of

course, that is also nontrivial because this is a 2 by 2 matrix you have to multiply it by N

times. And, find out find that out and if N is very large which is true N is thermodynamically

large number often take into infinity, then it is this is also not simple.

But, what is simple is that we know the trace is invariant under similarity transformation and

so, what we will do is that we simply diagonalize this matrix P. And, then the trace of P, trace

of any matrix is basically the sum over the diagonals. Suppose you diagonalize this matrix,
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then trace of P is just the sum over the diagonals and the trace is invariant, this is also this is a

trace.

So, all I need to know is lambda 1 and lambda 2, the two eigenvalues of this and that they are

they are written here as lambda plus and lambda minus. So, let me also do it lambda plus and

lambda minus. So, these are the two eigenvalues I need to know that is all. So, the entire

problem has reduced to finding out these two eigenvalues, which is a 2 by 2 matrix, I can find

the eigenvalues and this is what the eigenvalues are.

And now suppose, lambda plus is greater than lambda minus, then lambda plus to the power

N plus lambda minus to the power N is I can take lambda plus common to the power N

common, then 1 plus lambda minus 2 the power N divide by lambda plus to the power N.

Now, this quantity, so this let me just put a bracket here, let me put a bracket here. This is the

quantity I have to calculate, right.

Now since lambda plus is greater than lambda minus lambda minus divided by lambda plus

less than 1 and if N is very large, this quantity actually goes to 0. It is exceedingly small, if

say N is millions, zillions or trillions or whatever 10 to the power 23 is a typical number in a

real system, then any quantity which is less than 1, if you multiply it by even by 10 times it

will become almost 0. So, you can actually neglect this term without any problem. So, all you

are left with is just lambda plus to the power N and that is all you do.
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So, these are the two eigenvalues out of which you will only keep one and so, so this will

become so called is. So, here straight here it is straight away one calculates the free energy is

minus K B T log of Z and in evaluating Z, you will keep only that lambda plus. So, only Z for

lambda plus is required and that is what is done here. So, the F that you get is what is written

in the bottom. From here you can now calculate m which is the magnetization.

(Refer Slide Time: 27:22)
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And, that is this value this formula due to. So, m is sin hyperbolic beta external magnetic

field divided by this denominator cos hyperbolic square beta H minus 2 e to the power minus

2 beta J, sin hyperbolic 2 beta J just look at what happens as H goes to 0 at 0 field external

field is 0.

As external field goes to 0, sin hyperbolic term goes to 0. This goes to 1, this goes to 0. So,

you have m going to 0. So, now the look at the result it is very different from what we got

from the mean field theory. So, in mean field theory at a particular temperature, at any finite

temperature which is where we are now beta is taken to be finite so T is finite here, so that

means; m goes to 0 at any finite temperature as long as h goes to 0.

So, there is no spontaneous magnetization at any finite temperature, that is what this says.

Remember as beta goes to infinity of course, then this will not work and that is exactly what

happens at T equal to 0. At T equal to 0, only at T equal to 0 you will find there is a finite

magnetization.

At any other T you can see that, so this is beta J equal to nonzero, the dashed curve is for any

beta J non-zero and the this curve is for beta J equal to when T goes to 0, this is this straight

line. So, this will become a vertical straight line at beta equal to 0. So, so this will just

become a vertical line at beta at beta equal to infinity at any finite temperature it will be like

this.

So, this will be m versus h. So, this is T equal to 0 and this is T greater than 0. As of course,

as field if field is finite of course, then you will have a finite magnetization that is true,

because field will align, but when we discuss spontaneous magnetization we mean that

without the absence of field ok.

So, and that is a result that we get here which is dramatically different from the result which

is at in the mean field theory. So, the mean field theory is not correct here, it does not give us

the right result. The reason for that is that in low dimensions entropy the fluctuation due to

temperature leads to an entropy.

So, F is U minus TS remember and only at T equal to 0, entropy contribution is 0. I mean you

do not have any entropy contribution whereas, at any finite temperature; the free energy has
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an entropy contribution and it is true that at one dimension of Ising in Ising model the entropy

contribution always wins at any finite temperature and makes the system disordered and you

have no chance of having an ordered state spontaneously ordered state.

(Refer Slide Time: 31:12)

(Refer Slide Time: 31:15)

And, that is exactly what the exact result tells us that. And so these are some results the you

can calculate free energy, internal energy, specific heat, entropy, everything because these are

all exact results this is how it remember this specific heat curve which is again looking like a
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Schottky anomaly. Because, you have a state with two levels plus plus see there is this plus H

times S.

So, plus H and G mu B plus h and minus H for spin up and spin down, a two level system; so,

again at some scale of temperature there will be a peak. So, that is what is happening and then

of course, its it falls off. The free energy of course, goes larger with temperature negative and

large internal energy starts from minus one say in this normalization and it approaches

towards a smaller value.

And, the entropy as I said entropy at 0 temperature is of course, 0, but then at finite

temperature entropy will just again become S S will become K log K B log 2 J plus 1 which

is 2 here.

(Refer Slide Time: 32:42)

So, this is what the entropy will approach to. At high temperature, these spins will sample all

the possible two states it has. So, total number of states will be 2 to the power N and log of

that will be N log 2 and S by N is basically K log 2. So, that is the result that exact solution

tells us and it’s very very different from the mean field result. The trouble is that in mean

field one does not distinguish between any dimensions or anything and it replaces all the

fluctuations to 0 it sets all the fluctuations to 0.
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And, here in low dimensions is the fluctuation that is very important and as shown by the

exact calculation, the fluctuation kills the order and there is no spontaneous order at any finite

temperature for Ising model in one dimension. So, that is a result which I want you to

remember that low dimensional systems are dangerous because there are there is huge

fluctuation and that fluctuation has to be taken into account, if you want to do a theory on to

understand those models.
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