Electronic Theory of Solids
Prof. Arghya Taraphder
Department of Physics
Indian Institute of Technology, Kharagpur

Lecture — 36
Paramagnetism of metals

Hello, we are working on this conduction electron Paramagnetism.
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And, what we have shown is that the density of states can be written as for the up electron the
total number of up electrons can be written as half of the original density of states E plus mu
B into H. So, original density of states at E plus mu B H times the Fermi function integrated
from 0 to infinity. So, that is my n up. Similarly, n down is half of g E, but E at minus mu B

H fE d E ok. So, this is the relation.

Now, as we mentioned that mu B H is much is a small number small energy compared to the
electronic energies that we are talking about and soon we will see that we are only interested
close to Fermi level. So, for so, mu B H is an exceedingly small number compared to that less
than even 100 in most cases. So, in that case we can just do a Taylor expansion before that let
me just write down the expression for M; M is mu B into n up minus n down which is then

mu B half of f E g of E plus mu B H minus g of E minus mu B H times d of E.
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So, this is my integral that I have to consider. Now, this is from 0 to infinity.
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There is one more thing I wanted to bring to a notice is that f of E equal to 1 over E to the
power beta E minus mu plus 1. So, this is my Fermi function. So, they remember that there is
a mu sitting here in the Fermi function. Now, we are in this calculation for example, we have

assumed that for both n up and both n down we are using the same Fermi function, but it is it
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is not completely question, in the sense that we have to also see that the mu has not changed

when you put the magnetic field for.

So, then so, for n up and n down you can use whether for the case with magnetic field which
is what makes n up and n down different in that case mu may have also change. And so, then
we have to argue and reason that mu has not change at least to first order in the chemical
potential mu has not changed to first order in mu B H when the field is present. So, it is the

same values.

So, remember we are using the same value that we had for the case with H equal to 0. The
same mu is being used for both n up and n down and in the entire calculation. f E is not
different when H equal to 0 and H not equal to 0, but that is not completely correct, but there
is an argument I can give which tells you that it is to first order that is the same. So, let us just

look at the value of n total number.

Total number is n up plus n down. Now, if you look at this is g E from here from this
calculation you can easily see that this is g E f E just use the n up and n down that I got in the
previous page then you will land up with this equation ok. So, this is a remember this
equation is the same as the one that you had obtained if you did not have a field. So, this
equation is just that there was as if there is no field and is the number total number even

without the field.

So, so that means, to first order which is where we did the Taylor expansion there is
absolutely no change in the chemical potential. So, that is kind of an argument that tells you
that the chemical potential remains the same. For so, which you know is that from Somerfield
theory we remember that it is 1 plus K B T by E F square right. So, that remains whatever it
is to first order in mu B H the magnetic field has not changed; the chemical potential to first

order in mu B H ok.
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I mean that is a side issue, but then one can just go ahead and do this integral which is here
this is the one we are after. So, these two if you just subtract if you do a Taylor expansion and

subtract, then what will you get is this term.
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So, , g E plus mu B H can be then Taylor expanded as I said since mu B H is very small g E
plus mu B H into g prime of E derivative. So, this is plus minus. So, this also I can make plus

minus. So, you finally, get this expression for m which is mu B times n up minus which is mu
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B into n up minus n down and that gives you mu B square into H coming from here this half

will get cancelled and give you 1 and you will have g E g prime E fE d E, ok.

So, this is the result that we have. Now, we just have to evaluate this integral. Remember that
I can do a integration by parts which is shown here. So, let me just use it look at this
integration by part you can see that this is equal to. So, this is equal to mu B square H into g
E f E evaluated at 0 at infinity minus d fd E g E d E, right. So, that is the integrational part,
but now these look at this g E is 0 at 0 and f E is 0 at infinity. So, this term basically goes to
0. So, all we have is minus mu B square into H d f d E times g E times d E to infinity. So, that

is the integral we have to calculate.

(Refer Slide Time: 10:04)

Vaw Wonion IN yeu jees [wh s Y 4
v Toah ar - " ey Lo O snm % D the oW ‘ Ba 0 » =
"6 BEQO0 k8O0 m. - LT 0 (T T L e |

&
Ui the fict that 5000 & O (o) o O it
I i s, Hemee:
A
u:-..;.-,( (-E{]rmr
Bt degenerme ik o T = 0 =d f/dE, fhe cufleremiia] of m siep Runcce, E
v deka function £y i
o e wg-p, .”
w0 s w ovver M m iy amdbenc p = il ‘ ‘g (E— E F)
—_ o
T the romdegenern i, ) % "7 40T g g dE'
L
df T
and 3¢ mgistisaton i M = NL H Cj (_E‘)
i e il - i
R T L .
5 ( : il T
"‘NL-L#AQ..AJ
=a up/hT.

Now, here again we make this quite reasonable approximation that d fd E is a function like

this f is a function like this right at any finite temperature there is a slight deviation around E

f.

So, at 0 temperature for example, this is just a finite drop here vertical drop. So, del f del E
can be approximated fairly well by a delta function around E f ok. So, del f del E can be
approximated by a delta function at E F except everywhere else it is 0 it is flat and then that is

exactly what has been done and once you put that in this value then you only pick up the
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value at g is evaluated now only at f. And, that gives you the previous result that m equal to

mu B square H into g of E f. So, chi equal to mu B square g of E F ok.

This is the result then we got from a much more elaborate calculation, but the result is the
same and it is T independent T independent ok. The other interesting thing that as an aside
one can mention is that if you if you are working in the non-degenerate limit like at very high
temperature then of course, your Fermi function will be replaced by a Boltzmann function
again and you can do this for yourself you can check that minus del fd fd E now is fby k B

T and magnetization therefore, comes out to be n mu B square H.

So, the susceptibility is n mu B square by k B T. So, which is the result that we obtained for
the classical for the case where the moments were independent in the non-degenerate case

which is the Curie result.
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So, the Curie result is obtainable from the Pauli result in the limit when the system is
non-degenerate. Of course, a real conduction when a metal is never non-degenerate and you
have to work in the degenerate limit which is what gives us this result. So, this is T
independent. So, this is extremely important in the sense this is called Pauli paramagnetism;

Pauli was the person who first derived this.
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One thing is if you if you see the result here the agreement between experiment and the
theory is not. So, good as we had it for Curie’s law or for diamagnetic contributions the
reason for that many fold, but as you can see this there are many other contributions that

come in a in a in the susceptibility of a metal.

And, one contribution that is important to note is just by in passing I mentioned that there is

of course, a diamagnetic contribution that exists that always exists.
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And, if you have a conduction electron then conduction electron of course, also have a
diamagnetic contribution right. So, and this is not easy to calculate and this was calculated
diamagnetism and this was calculated by Landau and so, it is opposite to the field. It will
oppose the field of course. So, with a negative sign and susceptibility Landau is about one

third with the minus sign of course, chi Pauli.

So, this will have to be also accounted for and so, the theory Landau’s Landau actually
calculate it, but remember this is significant we had already noticed such effects when we did
integer quantum hall effect where you had this levels which are quantized right. So, E was E
sub n was quantized and typically the landaus susceptibilities appear when you have to take
account when at very large fields and very low temperatures then of course, you will see

these contributions coming up.
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So, that is the story of susceptibility in a in several cases one is paramagnetic insulators and
the other is metals. And in the other case where there is no paramagnetic susceptibility, then

you had a diamagnetic sustainability which is for example, E naught gas solids and so on.

So, what we studied so far is there is a diamagnetic contribution, then paramagnetic
contribution; so, chi is negative. So, paramagnetic; so, chi positive and, so, if you have
independent paramagnets, then the chi is also going as independent ions, independent
moments. Then you have chi going as one by T then you have Pauli paramagnet which is
what conduction electrons do magnet which is chi is independent of chi positive of course,

independent of temperature.

So, these are things that we studied and we can make experiments compared with
experiments and basically these are all that one looks for. Of course, there are these other
situations like one electron paramagnetism and all which are there you have to just remember
that they are there, also Landau susceptibility is also there, diamagnetic susceptibility in a

metal.

So, all those issues that are there, but main issue that one really deals with in real systems are
these response of moments from a system of free nearly free moments or in a degenerate
system degenerate moments and that is what the subject is and the other interesting thing that

I am going now is where there is spontaneous magnetization.

So, all this we have discussed is that the magnetization is induced by the field whereas, the r
systems like iron, cobalt, nickel where the magnetization is spontaneous. The systems is
spontaneously magnetized, you do not have to put a field to magnetize it and that is what we

will start discussing from this moment onwards.
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So, let me just introduce you first to what these systems are all about. So, this is about
magnetic order ok. So, magnetic order is as I mentioned in my first class that on magnetism
that magnetic order is was seen long back about 600 BC and the name magnet came from a
place called magnesia apparently somewhere in Turkey. And, that there were there were
minerals there, which were magnetic and that was extracted and used as used to attract iron

and so on.

So, these magnetic materials as such magnetism where the magnetism exists spontaneously is
in use for a long time ok. So, what kind of magnets can you have magnetic order? This for
example, is of course; you need moments to have order. These moments have to order to give
you magnetic order. The moments can be ordered by the field which is what in paramagnet

what happens.

So, whereas, they can be ferromagnetic there is something called ferromagnet where you
have all the magnetic moments are more or less aligned. And, large chunks of magnetic
moments are aligned and if all of them aligned in the same direction then you will finally,
pick up you will have a spontaneously magnetized system; it has a magnetic moments

spontaneously.

433



There are other systems also different kinds of magnets which are like for example,

anti-ferromagnet which is shown here.
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I will show a another picture next for example, this. This is a cartoon picture though, but it is
it depicts what the situation is. In a paramagnet for example, you have moments of course,
free moments, but these moments are completely random randomly oriented. And, there is
nothing that orders them and they do not talk to each other. There is no interaction between

two moments and they remain disordered.

Now, this if you if you measure the moment at a particular site, there at a particular ion for
example, you will pick up a moment, but if you find out the total magnetization of the system
you will not find any moment that is what paramagnet does. Whereas in a ferromagnet, which

is the bottom left you will find that all the moments are more or less aligned.

At very low temperatures they are all aligned at finite temperature of course, there are these
fluctuations due to due to thermal disorder and, but still to a fairly large temperature they are
they remain order and they show magnetic long range magnetic. This is called long range

magnetic order the magnetic order persist over an entire macroscopic range of the system.

There is also this strange kind of order which is called the antiferromagnet whereas you can

see a blue spin is up and the blue red spin is down. So, every spin has its nearest neighbours
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down. So, the neighbouring spin of a spin up are all down the neighbouring spin of a down
spin are all up. Now, this is one kind of antiferromagnet there are other kinds also ah, but I
will show the pictures as we go on. But, this if you if you just look at it you can immediately
see that if I sum the moments of magnetization coming from each of these tiny moments, the

sum will still be 0.

So, an antiferromagnet has no net moment whereas, a ferromagnet has a large net moment.
Although in both cases there is an order. This is also an order, the antiferromagnetic order is
also a long range order because if this is up the blue spin at the top left is up then I know what
is the direction of any other spin at anywhere in this lattice as far as you go. If this is the
arrangement then I can tell you what the arrangement what the spin at a particular side is,
knowing any particular arrangement the direction of moment at any particular side. So, that

means, there is a long range order.

This is called as a special kind of material which is it shows again a long range order where
the up spin and the down spins do not cancel each other. In this picture the blue spins are
larger, the red spins are smaller. This is like an antiferromagnet here, but it is that the net
moment if you sum the sum of the blues will be more much more than the sum of the red. So,
it will show up with a finite magnetic moment like a ferromagnet; but much less because this

partly cancelled by the red moments.

So, that is that is what this ferrimagnet does. This is again a long range order all these are
except for the paramagnet. These three are all long range order. There are different kinds also
more complicated ones, but these are the ones I am showing as time goes on we may see

some other.

Now, these ferromagnets for example, there are this ferromagnets available in nature
elemental ferromagnets iron, cobalt, nickel for example, is very well known. These look at
the transition temperature. What is this transition temperature? The transition temperature is
as I said is the where the disorder due to thermal fluctuations cancels the scale of energy that

gives you the ordering.

So, so, suppose you take this ferromagnet on the left as you start raising the temperature at

some point the thermal disorder will be such that it will start behaving like a all spins will
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now every spin will become independent and sort of independent they fluctuate. And, the
temperature is large and their fluctuations are such that the overall net magnetic moment
vanishes. So, if you it will be like a paramagnet, it is looks like a paramagnet then because

the H spin takes random direction because of the fluctuations. They keep on fluctuating.

So, at any at finite temperature of course, every spin every spin has to fluctuate and if the
directions cancel out over all it becomes disordered, then you will not find any moment. So,
the point at which the spontaneous moment vanishes at that temperature is called the
transition temperature. So, it makes a transition ferromagnet to a paramagnet. Cobalt has even

higher 1394 degree Kelvin. So, it is like more than 1100 degree centigrade.

So, these are these tell you that that there is a large energy scale fairly large thousands of
degrees at least a 1000 degree in iron and cobalt that forces the spins to align. So, this scale of
energy that the temperature has to overcome to misalign them is about 1000 degree; that

means, the scale of energy that aligns them is about 1000 degree.

So, this is not a small amount of energy this is much bigger than the for example, Debye
temperature in a system which is typically few 100 degrees and that means, you have to find
out where this energy comes from. And, that is one of the major tasks in condense matter as
to find out the right energy scales from the interactions that are present in the system and the

mechanics that drives it which is quantum mechanics in this case.

There are antiferromagnets also. These are oxides for example, cobalt oxide, nickel oxide.
These are well known antiferromagnets, there are many more that is these are where the
transition temperature is very high. Now, conventionally the transition temperature of an
antiferromagnet is written as T sub N; N stands for Louis Néel. Néel was the first person who
described this antiferromagnets and in honour of his name it is one does not call it T sub C, it

is called T sub N for an antiferromagnet.

Now, here is an interesting example which is a triangular lattice. Look at the order of the
magnetic moment [ mean the directions of the magnetic moments. These are actually this is

also long range order; because if you look at this red this spin for example, this top left, this is
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repeating here again this is repeating here again. So, along this line all spins are have the

same direction. Similarly, along this line all spins have the same direction.

So, and if you if this is a particular type of antiferromagnetic order. There is no net spin is
still going to be 0, but you can see how this ordering. So, the spins rotate by 120 degree if
you go from here to here to the next one and then the next one is another 120 degree and then
you come back to 360 degree back. So, this over a triangle you have this 120 degree angle
between every two spins. So, this is another very interesting order. It happens in vanadium
chloride, vanadium bromide and many other systems not too many, but some other systems

also. So, this is an antiferromagnetic order on a triangular lattice.

So, this all this we will start discussing from the next class.
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