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Drude Model continued: Hall Effect

Hello. We are not done with Drude model yet. The model has been around for more than 100

years and it has its share of success. So, let us just try to understand a few more phenomena

using Drude model which actually helped us in understanding several experiments in the past.

Let me introduce to a very important experimental tool which is called the Hall Effect.

(Refer Slide Time: 00:53)

Now, Hall effect is a way one measures the charge of the carrier in a particular solid and so, it

has been around for a long time and it also tells us many more things which is why we will

come back to it at a later stage again. What we do now is that we start from the equation of

motion that we wrote down and consider a geometry that is different. So, what does Hall

effect do?

The original idea of Hall was that if a current flows in a conductor and if you put a

perpendicular magnetic field across that conductor then some of the electrons will get
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deviated because of the Lorentz force coming from the magnetic field and this will deplete

the number of electrons arriving at the other end.

So, that means, effectively the resistance has increased and he was looking for the increment

in resistance due to magnetic field. The geometry is simple, let me draw a slab of conductor.

In this situation let us draw the axes also: x, y and z and the electric field is along x direction.

There is a magnetic field perpendicular to this which is along the z direction equal to (0, 0,

B). Its magnitude is B and let me show you what will happen. There is this Lorentz force v

cross B divided by c into minus e. This Lorentz force component coming from the magnetic

field will turn the electrons away and what will happen is that there will be a concentration of

positive charge on one side and negative charge on the opposite side as shown.

So, that means, an electric field gets generated in the transverse direction, y direction here

and that field actually opposes further movement of electrons. This field basically cancels the

force that comes from the Lorentz force and that is where the steady state is reached.

Let us calculate; first let me show you the directions. This is my B along z direction and this

is the direction of v along x and this is minus e v cross B by c. Remember the currents are

flowing in this direction; that means, the electrons are flowing in that direction and that is

why I have drawn the v vs x in this direction.

There are quantities that one needs to define. The two quantities that one defines here are this

quantity which is a standard E x by j x called magneto-resistance simply because there is a

magnetic field. Had there been no magnetic field this is just the resistivity that it would

calculate, but because there is a magnetic field this is called a magneto resistance.

And, then there is another quantity that is very important which is R sub H (R H) called Hall

constant whose definition is E y by j x into B. Why does one chose this kind of a constant?

See for example, this E y as I said is the field that is generated due to the movement of

electrons across, accumulation of electrons on this surface and that surface.
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So, that means, that this E y should be proportional to the current. It has to be proportional to

the current because of the movement of the electrons is due to current and in addition there is

a bending caused by the magnetic field. So, it should be proportional to B also.

So, E y is a constant proportional to j x and B. And, so that is why this constant was chosen

and it is called the Hall constant. Our aim is to determine this constant. So, let us go ahead

and do the calculation.

(Refer Slide Time: 07:09)

See the Lorentz force is minus e by minus eE electric field plus minus e v cross B by c in

Gaussian units. Now, if you do that then this part gives me minus eE that this is the electric

field minus e by c. So, let me just show you what this simple cross product, remember B = (0,

0, B).

I will have no z component of velocity involved here. I will have minus v y into B plus v x.

So, these are the two components v y into v x into B. So, the x component is minus v y into B

and the y component is v x into B. Under this force let us calculate the equation that we

already had and try to find out what happens to the numbers that we wrote down, the Hall

coefficient and the magneto resistance.
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Now dp/dt equals to minus eE plus v cross B by c and this term that we derived, the

relaxation term, the drag term or whatever it is called (usually called drag term or just the the

relaxation term).

In the steady state of course, as we did the other day, we will put this dp/dt to 0. Therefore, I

have two equations: one is for the x component which is minus eE x; remember the field I

started with was in along x direction, but another field has now generated which is in the y

direction because of this term. So, I have to keep both the fields minus e B by m c into p y

minus p x by tau.

What I have done is a I have written as p by m which will do for the y component also minus

eE y plus eB by c into m into p x minus p y by tau. So, these are the two equations that I have

to simultaneously solve. So, this eB by mc is usually written as omega sub c, will come back

to it when we do electrons in a transverse magnetic field again and also what we do is that

multiply both the equations by minus n e n e tau by m. See, you can see the logic for doing

this because if we use this multiplication these terms will become n e square tau by m and

there is a e B by m c. So, I will have a omega c times tau.

(Refer Slide Time: 11:53)

That gives me the equation that sigma0 E x equal to j y into omega c tau plus j x. See that I

am using the fact that j equals to minus n e v. So, the other one is sigma 0 E y equal to minus
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omega c tau j x plus j y. So, these are the two equations that I have. They need to be solved.

Now, the what I want is a the this Hall resistance and for that I have to put the current in the y

direction to be 0, because that is when the equilibrium has reached in the steady state a. So,

no more current is flowing in the y direction.

So, that gives me j y equal to 0 and if I do that then E y from this equation is equal to. Let me

write the full thing. E y by j x into B, you can calculate these, equal to R H will turn out to be

1 by n e c with a minus sign. This minus sign is very important because now this is the

quantity I defined as R H.

So, R H turns out to be minus n e c. This minus sign tells me that the carriers here are

electrons. If there is a positive sign what I can assume then is that the carriers in the system

are of opposite sign to the electrons. For example, when holes carry the current which

happens in metals or semiconductors sometimes.

This relation is a celebrated relation, this is the Hall constant which tells us the sign of the

carrier. I will ask you to remember this because this is such a simple relation it only depends

on the density and then two fundamental constants electric charge and c with a minus sign.

So, that is what one is really after in this experiment.

And, once you do experiments what you will find is that this relation is more or less valid in

many metals. However, there are systems where the sign is different which I actually

preempted and I said that there are different kinds of carriers. That is indicative of the fact

that there are different kinds of carrier in some systems which are positively charged and

which brought in the idea of holes. The other problem with this is that this relation is not

always valid, such a simple relation does not work always.

This n is of course, temperature dependent, in a metal it is not so strongly dependent, but this

simple relation fails in many materials, but it is still a celebrated relation because for many

systems it works out and it is one of the very few ways in which you can determine the sign

of the charge of the carriers.
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(Refer Slide Time: 16:31)

Now let me wrap up this discussion by showing you one more simple application of this

equations that we got and then I will be done with it which is what I have been mentioning

from the beginning that the this dp/dt, the dynamics, has so far not played much role in this

deductions. We have always used the steady state condition and said dp/dt=0, but there are

situations where it is not and one such situation obviously, is where there is a time-varying

electric field.

So, when there is an electric field that is time-varying then in that case this will not be 0. It

will follow the time dependence of the electric field and we can work out the equations for

conductivity in such a situation. I will show you that the conductivity sigma becomes a

complex number in this case and it becomes frequency-dependent.

Let me show you: it is a very short calculation and anybody can do it easily. This is what I

will work out now. Suppose there is an electric field which is varying in time with a single

frequency and this I denote by real part of E of omega, e to the power minus i omega t .

Then, I will use this equation dp/dt equal to minus p by tau plus the force coming from here

and I remember that since E is varying with a single frequency the electron momentum will

also have the same frequency. I can write the momentum of the electron as the real part of p

of omega e to the power minus i omega t. Now, of course, what I can do is that I simply
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substitute these two complex representations of the field and the momentum in this equation

and I get this equation for example, the one that I have been writing by p by tau minus eE.

This equation now becomes minus i omega p of omega simple time derivative will give you

that is equal to minus p omega by tau minus eE omega because E to the power minus i omega

t gets canceled from both sides. So, that is the equation. Now, this equation is very easily

solved. I mean you can write down the current from this equation.

Current is again I and we can assume the current to be following this frequency. So, this

current is again real part of j of omega e to the power minus i omega t and j equal to n e v for

electrons, equal to minus n e p by m ok.

If you combine these two then your j omega is j omega turns out to be you just put it back

here in this equation in these equation, this equation. So, then j omega is equal to minus n e p

omega by m equal to n e square by m into e of omega by 1 by tau minus i omega. Now, this is

a very important relation. It comes by replacing the p of omega from here you can replace p

by j times m by n e into minus i and that will give you this relation.

That it is the relation j omega equal to sigma omega, now everything is frequency dependent.

Remember E omega, we can easily find out that sigma of omega equals to sigma0 divided by

1 minus i omega tau where sigma 0 is n e square tau by m, the good old DC conductivity.

That is what happens when you have a time varying electric field applied to the system. The

conductivity is now a complex number and this complex behavior is dictated by sigma naught

divided by 1 minus i omega tau. In most cases i omega tau is a very large number and then in

that case you will recover your sigma known i sigma 0 by omega tau.

If omega tau is a small number then of course that means, your frequencies are very low and

you go back to the DC limit which is a sigma 0. But, typically generally these frequencies are

fairly high, particularly for electromagnetic radiations these are in the terahertz region: 10 to

the power 15 Hertz or so. There are you have to keep it. From this relation you can go one

step up and you can use Maxwell’s equation.
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(Refer Slide Time: 22:57)

You can use Maxwell’s equation and combine with these result that j omega equal to sigma

omega E of omega then you will find a very useful identity which is the dielectric constant

which is our good old dielectric constant which is now 1 minus omega p square by omega

square, where omega p square is 4 pi n e square by m.

Now, if the dielectric constant has to remain positive, then this omega has to be greater than

omega p. So, that means, this quantity has to be less than 1; whereas, if omega is less than

omega p then there is a trouble. Because then it becomes a negative number, this goes into the

frequency and in the E to the power i omega t and then it becomes a complex number and

that means, there is a decaying part.

Which means that your frequency, if it is not more than omega p which is called the plasma

frequency, then electromagnetic radiation will not penetrate into the system, it will decay

down whereas if it is greater than this then it will pass through. So, oscillatory radiation will

propagate and the metal will become transparent if your omega is greater than omega p.

This relation is actually very useful and the value of plasma of frequency is typically around

10 to the power 15 Hertz range for metals. So, a conclusion from this simple classical model

with relaxation time approximation is that a metal can be even transparent to an oscillating

electromagnetic radiation or the radiation can decay.
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A lot of useful physics can be obtained from a simple model like this and that is why Drude

model has been studied for so long. It has run its course. Many simple minded pictures can be

obtained from this extremely simple and classical model of Drude.

What we have done today is we are concluding our discussions on Drude model. We will

come back to it later, to discuss some of the successes and failures at some point in the future,

but basically it shows that a model of such simplicity treating electrons as a classical gas with

a relaxation time approximation gives us a lot.

Many useful and interesting results came out while the discussions are all classical. There is

no quantum mechanics involved in this and still we get very useful results which tell us the

story of a metal both in static condition as well as under oscillating electromagnetic field.

Now, apart from that there are situations of course, I must admit where Drude model fails

quite miserably. For example, specific heat is a great example. You just saw that specific heat

in Drude model is still assumed classical, 3/2 n k which is not what happens in a metal, it

goes linearly with temperature.

The success of Wiedemann Franz law from Drude model is also a bit qualified in the sense

that it works out at low temperatures and at high temperatures, but there is a large range of

temperature where this constancy, the Lorentz number being a constant, does not really work.

Nevertheless it is a very useful model and it has run it is course for nearly 100 years now. For

many simple metals where electron-electron correlatio is not very strong or other anomalous

effects exist and if you leave aside those, then for many metals it works it gives you very nice

results.

In the next lecture onwards I leave Drude model and start using quantum mechanics which is

what finally dictates the world of elections and one has to calculate things starting from

quantum mechanics of many electrons. So, the interactions might become important. We will

discuss all of that at a later stage.

At the moment we will start with simply a system of non-interacting electrons, with quantum

mechanics and see what comes out of it. So, we are in for completely new world.
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Thank you so much.
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