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Hello. We have been doing calculations on determining the band structure of electrons. This

involves basically again a single picture in quantum mechanics where we try to understand

the solution for an electron for a single electron for example, in a potential from the ions

which; obviously, has the symmetry of the crystal.

So, the ions the atoms form a Bravais lattice in a and that Bravais lattice we define what is a

Bravais lattice. Basically, set of points in regular arrangement and orientation each of these

points must be must view the lattice exactly the same way from any other point. So, and that

Bravais lattice generally that is the Bravais lattice is generated by a vector R which we

defined previous day.

(Refer Slide Time: 01:31)

And, in the previous class and what we said is that the potential therefore, has this periodicity

a potential U which is which has the periodicity of the Bravais lattice. And, this is a 1
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dimensional rendition of this periodicity for example, the ionic potentials or sort of diverges

towards minus infinity its Coulomb potential.

So, at R equal to at every location of the ion the Coulomb potential goes to almost minus

infinity. Although, in real solid it will never go to minus infinity and there are other effects

that will cut it off, but it becomes very large at every ionic site and then very quickly dice

down away from the site.

So, this is the periodic potential in which the electron is moving. The assumption is that the

electron-electron interaction between electrons is negligible as well as the fact that the

dynamics of the nuclear the atoms is completely neglected.

And, this the second is called the Born-Oppenheimer approximation and the fact that we are

ignoring electron-electron interaction means we are still in the independent electron

approximation. So, under these approximations we embark on solving these Schrodinger

equation for a single electron in such a periodic potential ok.

(Refer Slide Time: 03:30)

So, and we mentioned that there is this very well known theorem which was written down by

Felix block where what we showed is that the wave function must have this kind of a form

psi k of r is e to the power i k dot r u of r, where u can also depend on k.
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So, this u k of r plus capital R is p is the same as u k of R, that is this u functions small u

function carries the periodicity of the Bravais lattice on which we are seeking a solution. Now

of course, this leads to the corollary clearly that psi of r plus capital R is just phase factor time

is psi of k of r.

So, psi k r plus capital R is e to the power i k dot r psi k of r and this is trivial you can just

add a psi r plus r here and this term will give you the first phase factor will give you e to the

power i k dot r and the second one being periodic will remain the same. So, that is the phase

factor that you can you see this is very powerful in the sense that this tells you that if you

know the solution at any unit cell point r then you know the solution at any other unit cell

point.

Any other point inside the unit cell which is far away from it anywhere in the lattice actually

by just translating by this Bravais lattice vector. So, that is the; that is the very powerful

theorem and this theorem basically narrows down the class of solutions that are admissible

for an electron moving in a periodic potential ok.

(Refer Slide Time: 05:24)

So, then of course, we came to this so, called proof not a derivation, but a proof of Bloch’s

theorem which shows that is exactly the form that during functions must have. So, it starts

with this translation operator a translation by a Bravais lattice vector capital R. So, that
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translation vector translates any function; so, that we said is that it translates any function T

of R operating on any function r we generate f of r plus R.

And, then we found out certain properties of this R and one of them is this one that T of R

commutes with the Hamiltonian. This is a very interesting property because this commutation

allows us to use a very fundamental theorem in quantum mechanics which says that, if you

have; if you have two commuting operators or a set of commuting operator then you can have

a simultaneous wave function. So, you can choose a wave function which is a simultaneous

wave function of both of these.

In addition we also found that this T of R has this property T of R and T of R prime is they

again commute T of R prime T of R and this is the same as T of R plus R prime. So, this

property then so, this then allows us to write H psi of r equal to E psi of r and simultaneously

T R of psi of r equal to some c of R psi of r.

(Refer Slide Time: 07:45)

So, we will use these properties to determine the admissible solutions for psi of r and that is

what we did that this property for example, immediately implies that c of R plus R prime is

equal to c of R into c of R prime ok. And then of course, we can then write that c of a i any

Bravais lattice vector a primitive lattice vector is equal to e to the power 2 pi i x of i where

we showed that x of i has the form that writing.
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(Refer Slide Time: 08:44)

Then we can what we can do is that we write vector k k equal to x i b i sum over i equal to 1

to 3. And, in 3 dimension and where it satisfied this relation b i dot a j equal to 2 pi times

delta i j, delta i j is the chronic or delta symbol. So, where delta i you remember delta i j is 1

if i equal to j equal to 0 if i naught equal to j. So, that is the so, that that basically says that if a

i is are primitive lattice vectors in the real lattice then b i's are the reciprocal lattice vectors,

that is how reciprocal lattice vectors are defined.

So, therefore, c of R can be chosen at as e to the power c of R can be written as equal to e to

the power i k dot R. So, this is the this is my k vectors, these are my reciprocal lattice vector.

So, k is a vector in the reciprocal lattice.
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(Refer Slide Time: 10:42)

So, what we did next is that we basically showed that Born-Von Karman boundary condition

can be applied here also and that gives me the values of k that are.

(Refer Slide Time: 10:54)

So, values of k means values of x i; so, then one found that x i will be some integer m i

divided by the direction the size of the number of lattice sites in the direction or number of
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primitive cells in the direction of i. So, that is the these are technicalities I mean its basically

tells you that x x i has to be written in this way and therefore, k has a specific form.

So, i equal to 1 to 3 m i by N i into b i ok; i is i defines the directions along the 3 along a 3 b i

directions ok. So these so, this completes the sort of showing that Bloch’s theorem holds sort

of a its a proof of Bloch theorem that the any electron moving in a periodic potential; if you

solve its time and dependent Schrodinger equation then you will get a solution whose form is

in this the form obeys the Bloch’s theorem. So, that solution we obey Bloch’s theorem with;

so then.

(Refer Slide Time: 12:28)

So, let me just show you for clarity how these things work in reciprocal space. In the

reciprocal space for example, one defined something called a Brillouin zone, this probably

you have done in your elementary condensed matter course. The Brillouin zone is basically

the is called the Wigner Seitz cell in the primitive lattice.

What it means is that you take a any Wigner Seitz cell in the reciprocal lattice. So, take any

point in your reciprocal lattice then what you will do is that to find what is the Wigner Seitz

cell the procedure is very simple, just join that point with all is nearest neighbors. So, for

example, let me show you suppose you have a square reciprocal lattice is a square.
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So, this is a point it has all the; so, this just look at this point. It has 4 points on its 4 sides.

Now, to get the Brillouin zone all you do is to connect this point to all its nearest neighbors

and then draw a perpendicular at the middle of all these lines.

And, then the area covered by all these 4 perpendiculars that defines an area which is closer

any area inside this dash square for example, is closer to this point, this point central point

then to any of its neighbors ok. So, this region this region is therefore, the Brillouin zone of

this lattice reciprocal in the reciprocal lattice; so, that is how it is constructed.

So, this is you can go on constructing it by connecting to. So, this is the first Brillouin zone,

you can do the same for the next nearest neighbors which are here. You can join these and

then draw perpendicular. And, this region for example, this region its outside the first

Brillouin zone and within this a new square is your second Brillouin zone and so on.

You can go on doing it which is what is shown in this a for a square lattice for example here.

So, this is Brillouin zone number 1, then Brillouin zone number 2 and Brillouin zone number

2 is here as I just drawn here in my in this on the right hand side, the red dashed region and so

on. I mean you can go on doing this procedure ad infinitum.

The advantage of doing this is that the that is something may have already done, but I have

already know may already know that there is a you can define your energy spectrum within

just Brillouin zone. And, then it is you can just repeat the you can rid of the energy of any

other zone of the solid by just translating by a reciprocal lattice vector.

So, because the energy is invariant under the translation of a reciprocal lattice vector the

necessary is to the we only need to know the energy in only one zone which is the first

Brillouin zone normally taken.

But, this is not necessary it is a very useful scheme to write down the energies of energy

spectrum of a regular solid Bravais lattice for example. And, it helps us that we do not have

to know the energy for every k, all you need to know is the energy spectrum within the first

Brillouin zone then you know the energy spectrum anywhere else.

And so, let me show you how it is done. So, this is for example, the right hand picture is the

Brillouin zone for a triangular lattice often called hexagonal lattice also. Do not confuse it
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with the honeycomb lattice which is for graphene I showed the other day. This lattice, the

honeycomb does not have the central point, this see this is a hexagon, but there is a point at

the center.

So, this makes the this is now a triangular lattice or a hexagonal lattice whereas, in

honeycomb lattice you will have these hexagonal structure without the central point. So, that

is not a Bravais lattice whereas, this one is ok. So, the if you draw the Brillouin zone its

drawn here the first Brillouin zone it is a is again a hexagonal the reciprocal lattice is also

hexagonal uh.

So, from real lattice you come to reciprocal lattice and in the reciprocal lattice you draw this

region which is closest to this point then any other point ok. So, that is the method that is

called the Wigner Seitz cell and that is what one does to find the first Brillouin zone and go

one can go ahead and do find out the second, third, fourth and so on Brillouin zones. So, this

is the zone in which one remains interested for calculation of energies and anything;

everywhere else can be, but rid of from this energy spectrum ok.

(Refer Slide Time: 18:51)

So, these are more complicated one this is for example, in a cubic lattice where this is hard to

draw by hand. But, in a cubic lattice you can see that the same scheme has been applied and
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this is for the fcc lattice, this is for the bcc lattice. So, see body centered cubic lattice, this is

face centered cubic lattice and so on.

One can go on doing the same the procedure is the same instead of lines now you have to

draw plains perpendicular to the line joining the central point to its nearest neighbor. And,

that is the way it is done, the central point is often called the gamma point.

(Refer Slide Time: 19:40)

Now, as I said look at for example, in energy spectrum like this with a gap at the zone

boundary, if you look at this unit is k a. So, k a equal to pi from pi to minus pi is the first

Brillouin zone so, and there is a gap. So, let us not bother about this gap, but suppose we have

an energy spectrum which has the structure.

So, then the energy spectrum can be so, this is like the this part of the spectrum is this part

and this part. These two parts have gone beyond the first Brillouin zone and then what one

can do as I said is that you can translate that by a reciprocal lattice vector which is 2 pi by a 2

pi here k equal to 2 pi.

So, k will be 2 pi by a and if you translate then this left hand part this part will come to the

right and the this part this right hand part which is outside of the Brillouin zone will come to
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the left. And, they will both go inside the first Brillouin zone and this is exactly what was

happened. So, these arrows tell you how to translate it.

So, this one this piece goes here, this piece becomes this piece and this one which is in the

second Brillouin zone now goes here becomes this piece, this one this part sorry this part. So,

that is called the reduced zone scheme and this is the extended zone scheme. This is the one

which we normally draw for all k going to any k pretty large k’s also.

We can go on drawing it, but all of these pieces which are outside the first Brillouin zone can

be brought to this to the inside the first Brillouin zone by transition translation through a

reciprocal lattice vector which here in 1 dimension is k equal to 2 pi so, k equal to 2 pi by a.

So, this scheme is called the reduced zone scheme, most of the band structures that you will

find in the literature, in papers are done in this zone scheme. So, they will only consider the

first Brillouin zone and plot the band structure in certain directions because in 3 dimension

there are many different directions in which you can plot a band. So, people choose certain

symmetry directions in the lattice and plot the band structure accordingly in those directions.

(Refer Slide Time: 22:36)
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So, this is an example of how to draw energy bands in different zone schemes. And, as you

can see that this actually has a periodic potential causes a distortion in the band and that

distortion opens a gap here a distortion the; so, distortion due to a periodic potential.

So, periodic potential will change the band and open a gap at the zone boundaries at certain

points, here it is a certain point called half k, k is a certain direction in the Brillouin zone and

so, symmetry direction. So, there is this example shows that this is this can be drawn in

different zone schemes. So, this is basically now it is brought back to the first Brillouin zone.

(Refer Slide Time: 23:40)

So, here is another example. These first two we have already done, we have already shown

how to do it. For example, this region and this region and this region for example, they

migrate to here. On the this share this region that one which is highlighted here will go to this

to become this band, in the reduce zone scheme.

And, these left hand side will go to the, left hand one we will go to the this one in the first

zone. So, we are bringing things out from second Brillouin zone into the first Brillouin zone.

Look at this is now in the third Brillouin zone and this will have to be brought into the first

Brillouin zone. So, you will translate by two reciprocal lattice vector and this is exactly what

you will see, this is how it will work.
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So, this can be a brought to this will come here and this the other one this one will come here

by a translation of a reciprocal lattice vector. So, one can go on doing this and look at the

reduced zone scheme how it looks like, this is the first Brillouin zone. And, and you can

repeat the first Brillouin zone, this is called the repeated zone scheme; it is not popular.

The one central one is the one which people mostly use this one, the bringing everything into

the first Brillouin zone. And, this is basically repeating it I mean just first Brillouin zone is

being repeated on both sides. This one is the one which is the popular choice for doing a band

structure calculus, you are showing a band structure.

So, this is how the Bloch theorem help us helps us to find out the nature of solutions, the

property that the solution will have. And, the way the solution and gives the ones you find the

solution then the solution gives an eigenvalues, you have the eigenvalues.

The eigenvalue will depend on the k vector in reciprocal lattice and that energy basically that

is the energy, energy depends on the k value reciprocal lattice vector. This is called crystal

momentum k and that the e versus k plot is done on a reduced zone scheme where every

energy is the every, the energy is shown in the first Brillouin zone and this is the this is called

the reduced zone scheme.

So, everywhere you will see E versus k plot then you will find that it is shown in the first

Brillouin zone. And, why can we do it why do we; why do we do it in only one Brillouin

zone in the first one? It is because its makes life so much simpler, the rest can all the obtained

by just a translation of a reciprocal lattice vector.

So, periodicity of a lattice or a Bravais lattice gives us this enormous freedom that we only

need to calculate our find our energies energy spectrum in first Brillouin zone and that is all

we need. Similarly, the solution is required to be found only in a primitive unit cell. And, then

you can just extend it by you know how to extend it by just a phase factor to find out the

wave function in any other region of the lattice. So, just one primitive cell is good enough for

you to find out the wave function. Similarly, for energy is just the reduced first Brillouin zone

that is enough, beyond that is obtainable from this energy spectrum. So, that is how it all

works.
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