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So,  welcome  student  to  the  next  class  of  Introduction  to  Non-Linear  Optics  and  Its

Application Essentially, this is the last class we have lecture number 60. So, let us see, what

we have in the last class. So, we have Optical Soliton.

(Refer Slide Time: 00:27)

So, in the previous class, what we studied is, how from the Maxwell's Equation we can able

to  find  out  the  equation  which  is  called  the  Nonlinear  Schrodinger  equation,  and  the

derivation  was,  if  all  the  derivation  part  is  given  in  the  slides.  And I  just  give  you the

overview and how this equation the Non-Linear Schrodinger Equation can be derived from

the Maxwell's Equation.

And I want the student to please do that by your own hand, because if you do not do this by

your own hand then it will be very difficult for you to understand all the derivation and all the

things are there in the slides. When you have the study material with you, you will readily

find that how this equation one can derive from the basics non-linear Maxwell's equation.



I also give you the outline that how this equation can be derived, but I want all the students.

So, please do this calculation by your own if you are interested and then you will readily find

the form of the equation which is very important. So, let us go back to today’s lectures. 

(Refer Slide Time: 01:53)

So, the concept of soliton this figure we have already shown to you in the previous class

where we find that when the pulse is propagating is the dispersion medium, there will be

temporal broadening. When the pulse is moving in a medium which is non-linear in nature,

there will be a spectral broadening. But if the pulse is moving in a medium where dispersion

and nonlinearity both are there, then there is a possibility that dispersion and non-linear effect

may counterbalance to each other. And as a result, we will have, a something which preserved

is shape and this is basically the concept of soliton.

(Refer Slide Time: 02:40)



Also, one figure is shown to you and dispersion and nonlinearity can produce some sort of

chart  wave  packets.  This  chart  wave  packet  can  be  added  and  if  the  dispersion  and

nonlinearity, the amount of dispersion and nonlinearity is fixed in such a way that they can

counterbalance. Then we can have an optical pulse whose frequency distribution is not chart

and we called it optical soliton.

(Refer Slide Time: 03:17)

So, this is the very basic concept of optical soliton, but in order to understand in detail we

need  to  solve  this  equation.  That  is  now shown in  your  display  board  that  we have  an

equation which contain two terms, let us try to. So, last day we basically derive this equation

to the Maxwell's Equation. Again, I should mention that, you should be careful about deriving



this equation and if you do that once in your hand, then you will readily understand that, how

this equation 1 can extract from simply the well-known Maxwell's Equation.

Well, let us now concentrate in this equation, this is the equation if I remove this part this

non-linear part, then the rest of this equation will be similar to the equation, that we have in

our  quantum mechanics  class  which we called  the Schrodinger  Equation.  In Schrodinger

equation we have a single derivative of time, in time dependent Schrodinger Equation and a

second order derivative of space.

Here,  we  have  exactly  the  same  thing,  but  the  space  and  the  time  coordinate  is  now

interchanged. Here, we have first order derivative with respect to z which is space and the

second  order  derivative  with  respect  to  time.  And  these  things  is  normally  opposite  in

quantum mechanics when we deal with the Schrodinger Equation 

So, these two are quite same, only difference here in these optics that, we have an additional

term here, this is nothing, but a potential term in Quantum Mechanical Schrodinger Equation.

And this potential term is some sort of non-linear in nature; that means, if you say U is the

wave function, then the potential is generated by the wave function itself.

So, if you tally these two-equation side by side, you will find that, the first order derivative,

second order derivative both are there in Non-Linear Schrodinger Equation in optics which is

same as the quantum mechanics. And another term is here, which is basically a non-linear

term  and  this  non-linear  term  is  nothing,  but  the  non-linear  potential  term  in  terms  of

quantum mechanics, if I consider this equation and try to tally this equation with quantum

mechanics.

If I try to understand more this term basically, give rise to non-linear refractive index. This is

coming, because of this non-linear refractive index. So, when an optical pulse is moving to a

system. This is optical pulse that is moving system, what it does is, it changed the refractive

index here, with the law that n of omega I is n 0 of omega, this is the frequency component

plus into I the car effect. Because of this car effect, what happened the pulse is basically when

it is moving inside the medium it basically change the refractive index.

Now, in quantum mechanics and in optics, there is a similarity between the potential and

refractive index. You should remember this fact that in quantum mechanics, whatever I say,

potential is equivalent to the optics and this equivalent thing is refractive index. In quantum



mechanics we have, quantum will like this; in optics we have the refractive index profile

something like this.

So, refractive index behaves exactly in the same way the way potential behave in quantum

mechanics. So, these two things are analogous to each other. And here, we can see when the

pulse is moving, it is basically changing the refractive index or in quantum mechanical term,

we can say, that the pulse or the wave packet itself changing its potential.

If the pulse is changing its potential by itself then, this kind of potential is called the non-

linear potential and exactly we have this term here, in optics. And that is why this equation is

basically called non-linear Schrodinger Equation, because some sort of non-linear potential is

associated with that.

(Refer Slide Time: 08:43)

Now, come back to our optics domain. So, in optics this term the second term, basically give

us  dispersion  and  the  third  term  give  us  nonlinearity.  If  these  two  terms  somehow

counterbalance  each  other,  then  we  have  an  equation  simply  this.  It  suggests  that  U  is

constant or in other word there is no change of the input pulse, if it is propagating inside a

medium.

So that means, dispersion and nonlinearity, if I somehow able to counterbalance these two

terms, then we can have a stable propagation. So, these things so we try to find out here.



Before that,  one thing we need to do that  is the normalization of non-linear Schrodinger

Equation. 

(Refer Slide Time: 09:26)

So, this is a non-linear Schrodinger Equation, which is having some sort of dimension. Here

what is the dimension beta 2 is picosecond square per kilometer, T is picosecond gamma is 1

by watt meter U is root over of watt and z is kilo meter. These are the units here, in this

equation all the terms if I write in terms of units, it will be something like this. If you put all

this unit you will find that they are matching. This is root over of watt by kilometer. So, this

term also be root over of watt  per kilometer  and this  term also be root over of watt  per

kilometer. If you calculate carefully then you will find that, units are matching. 

But, it is convenient to write this equation in normalized unit which we always do as far as

the non-linear Schrodinger Equation is concerned and in order to normalize we make some

kind of rescaling. So, we introduce L D, as I already mentioned that L D is T 0 square divided

by mod of beta 2, this is called dispersion length. Also, we introduce something which is

called non-linear length which is 1 by p gamma. Again, gamma is the unit of 1 by meter watt

meter and p is a unit of watt. So, 1 by p gamma should be unit of meter; that means, the unit

of length U I write root over of P and this small u; note that is dimensionless.

And after having L D L N and U, if I start putting this thing into the equation then, I put u as

root over of P u. So, root over of P, I can take it out and u is there and then multiply L D to

entire equation if I multiply L D, it should be beta 2 by 2. l d T 0 square which is already



there and I write this T as T divided by T 0 square; that means, some sort of normalization I

am making and this  normalization  is  with the input pulse,  pulse width.  Then l  d is  here

gamma is here, I write u in terms of small u then it should be P root over of P mod of u

square. u equal to 0 and now this L D, if I divide this L D to z.

So, I have something called z by L D and then if I replace this beta  L D to t 0 square then,

this term will cancel out we have beta 2 divided by mod of beta 2 with a half term and here

we have L D divided by ln l; that means, the ratio of these two; mind it when I make a ratio of

these  two,  these  become  dimensionless.  u  was  already  dimensionless  T  by  T  0  is

dimensionless, u is dimensionless. Here, everything is canceling out. So, these quantities are

dimensionless, u is dimensionless z is dimension with the same of L D. So, when you make a

ratio of z by L D again this make dimensionless.

(Refer Slide Time: 13:33)

So, already by making some kind of rescaling, I can make this equation which has some sort

of dimension. Now, we can land it up with the equation which is dimensionless in nature. So,

if I now write this equation and put some dimensionless parameter like this term, which is the

dimensionless propagation constant tau which is T by T 0, which is the dimensionless time

and N is a ratio of L D by N L and root over of that, which is called the soliton order; soliton

order.

Now, please note that if L D is equal to l N L, then we have N equal to 1. So that means, we

have soliton order one or sometime it is called the fundamental soliton or the fundamental



case. Now, I replace this quantity here and if I replace; I will have these terms in our hand del

u del xi minus of signum of beta 2 signum of beta 2, essentially, means the sign of binodium

talking about. So, here we had a term beta 2 divided by mod of beta 2, which is nothing but

the sign of beta 2; that means, second order dispersion may have positive or negative, if beta

2 is  positive,  we called  is  a  normal  dispersion and if  beta  2 is  negative,  we called  it  is

anomalous dispersion. And mind it optical soliton will evolve. If my dispersion is anomalous

in nature then only we can counterbalance the dispersion with the nonlinearity.

(Refer Slide Time: 15:21)

So, sign of beta 2 is minus 1 is one of the essential criteria to have optical solitons. Mind it,

when we say, beta 2 is negative, so there is a possibility also beta 2 is positive. For beta 2 is

positive also, we have some kind of stable structure which is called dark soliton, that we also

going to discuss briefly in this very class.

Well, after putting all these things N equal to 1 and all these things, I will have an equation in

my hand which is a Non-Linear Schrodinger Equation. In normalized form. This is a very

well-known form in books and literatures. You will have this form and it is easier to solve,

because I am making all the dimensions out and if I try to solve this numerically, then, it will

be very easy to write the code of this equation and those who are interested, they can please

look the book called Non-Linear Fiber Optics by Professor GP Agarwal.

So, this book, you can follow and if you follow this book, there they have a solution of this

equation, numerical solution of this equation. So, if you are interested you can go with that



and write the code in computer and solve that. Otherwise it is very difficult to solve this

equation in general and you need to use something called inverse scattering method, which is

a very extensive method to solve.

So, I am not going to discuss in this class. In this class you just need to know few things that

what should be the solution of these things, I am not going to solve this equation but what we

do that, we will find some sort of solution. And since we know, what is the solution I just

directly write its mathematical form.

(Refer Slide Time: 17:30)

So, if you solve this equation then you will going to find that you have a solution and this

solution should be in this form i du z plus half d 2 u d tau square plus mod of u square u. This

is a non-linear differential equation and for this non-linear differential equation, since, it is

evolving with xi, we have one boundary condition here and this boundary condition is what

should be the value of xi at z equal to 0.

So, here we have a solution and the solution suggests that, if I launch an optical pulse having

a sech hyperbolic tau kind of form, then what happened that, it will be going to evolve, and it

will remain, it is a preserve. How to know that it will remain? It is a preserve and why this is

a solution we will do that by putting this U here in this equation. So, I have the explicit form

of U, I will put this here and check the left-hand side and right-hand side are matching or not

here in the right-hand side it is 0.



So, if I put this solution that is given to us here, then I will find that in the left-hand side we

have 0. If really this is a solution that is one thing. Second thing that you should note that the

phase is changing here,  with respect to xi which is  changing in a linear fashion, but the

temporal  part  remains  unchanged.  So,  whatever  we  launched  in  time  domain  over  the

distance there will be no change in the shape.

So, if this is tau this is tau. So, the shape will be something like this the width will not be

going to change the amplitude is not going to change. So, that means, the pulse will remain

the pulse shape will  remain conserved. So, this  is the solution typical  solution of optical

soliton and you should note that the typical solution is of the form sech hyperbolic tau.

If I plot the Sech; Sech hyperbolic tau you will find this kind of structure it will look very

close to the Gaussian structure, but it is not typically Gaussian structure it looks something

like that, but it is different it is sech hyperbolic. Next thing is that in frequency domain also

this shape should preserve, because that is the criteria of soliton that it  will  not going to

preserve the shape in time domain, but in frequency domain also.

Now I  have  a  solution  here,  if  you  make  a  Fourier  Transform of  that  you  will  get  the

distribution of these things in frequency domain and you should know that there are few

functions. If you make a Fourier Transform of that particular function this function is written

back  one  very  well-known  example  is  the  Gaussian  function.  If  you  make  a  Fourier

Transform of a Gaussian function then you will be written back Gaussian function. Here also

sech hyperbolic tau is some sort of function if you make a Fourier Transform of that that the

Fourier Transform also give you sech hyperbolic.

So, Gaussian function g if I make a Fourier Transform, I will get a Gaussian function in

Fourier domain sech hyperbolic function. If I make a Fourier Transform; I will also get sech

hyperbolic function; this there are few typical functions whose Fourier Transform gives you

the similar form. So, this basically tells you that. If sech hyperbolic pulse is launched then it

follows if it governed by this equation, the frequency domain also, it will its shape will be

preserved which is basically a condition of optical soliton.



(Refer Slide Time: 22:05)

So, now we have the solution in our hand, once we have the solution in our hand then the

next thing is that, we should put this solution into the equation and check whether they are

valid or not. So, in this particular slide we are doing this. So, here we have the solution U

once we have the solution U, it is sech hyperbolic e to the power i xi by 2. So, I need to put

this, here, in this equation this is my governing equation and check. So, first term is i del u

del xi. So, if I put this first term then i will have minus half sech hyperbolic tau e to the power

i xi two quite easy 

Next term is the derivative double derivative with respect to tau. So, when I have a sech

hyperbolic, I need to make a derivative of this quantity sech hyperbolic tau. So, we know that

the sech hyperbolic  tau.  If  I  make a derivative  it  should be minus of tan hyperbolic  tau

multiplied by sech hyperbolic tau.

Again,  I  need  to  make  a  derivative  and  we  know that  tan  hyperbolic  tau,  if  I  make  a

derivative it will be sech hyperbolic tau square and sech hyperbolic tau. Again, minus tan

hyperbolic sech hyperbolic. So, if you do this calculation, then you will find that this value is

simply this. One thing you need to do that and just replace this tan hyperbolic kind term and

you just change it to sech hyperbolic, then, everything will be in sech hyperbolic. So, you will

be landed up with this term and finally, mode of U square, U is simply sech hyperbolic cube

tau e to the power i xi 2.



So, all the three terms this, this and this is now in our hand what we will do that, we will put

all these three term together here and if I do the first term is half sech hyperbolic tau, second

term is  half  sech  hyperbolic  tau  minus  2  of  sech  hyperbolic  cube  tau  and  finally,  sech

hyperbolic cube.

So, you can see that, this term and this term will cancel out there is a half. So, this term and

this term will cancel out and eventually we have 0 in all cases e to the power i xi 2 i xi 2 i xi 2

is there. So, I can take i xi 2 common and this rest part will give you 0.

So, we can see quite easily that if the solution is of the form sech hyperbolic tau indeed. This

basically  is  a  solution  of  Non-Linear  Schrodinger  Equation;  that  means,  Non-Linear

Schrodinger Equation optical soliton should have a typical form which is sech hyperbolic tau.

(Refer Slide Time: 25:04)

Here finally, we like to compare these two things. So, in this particular equation, we can see

that there are two kind of possibilities. One is positive dispersion and another is negative

dispersion, if the dispersion is negative. Since, there was a negative sign here, so we have

plus sign here and once we have a plus sign here, we have something called bright soliton

solution, which we have already discussed.

So, sech hyperbolic is a solution, but there is a possibility that I have a normal dispersion and

in normal dispersion beta 2 value is positive. If beta 2 is positive, we have a negative term



here, if we have a negative term then still we have a solution and the solution is of the form

of tan hyperbolic tau.

Now, if I plot tan hyperbolic tau square which is basically the intensity. So, if I make these

things, which will be equal to tan hyperbolic square tau and if we plot that, it will look like

this here, we have the value and this value will go down and this is basically 0, it is over T

and this term will give you 1.

Since, the intensity vanishes at T equal to 0 point this kind of solution is called dark solution

or dark soliton. This dark soliton is a some sort of soliton; that means, the shape will remain

persevered,  but  it  is  dark,  because  at  T equal  to  0,  the  value  is  minimum here,  exactly

opposite to that we have in sech hyperbolic case at CT equal to 0, it is maxima here.

So, the solution is again there. So, if somebody is interested he or she can put this value of u

here and check that really, it is a solution or not, the way we have done for sech hyperbolic.

One can do that for also tan hyperbolic to check, whether this is a solution or not.

(Refer Slide Time: 27:25)

So, this  is  a typical  picture,  how these two waves are moving for bright  soliton.  In time

domain, if it is distributed, this distribution remains conserved and it is moving along the

distance. In the same way for dark soliton, also one can have a pulse shape and it will move

throughout the distance and it will something it will look something like this is schematic

diagram. If you do a numerical solution, you will get exactly the same results.



So, here these two is basically, the stable structure, one is called the bright soliton which is a

much interest and another is the dark soliton depending on the value of dispersion, if the

dispersion is anomalous then we have the bright soliton. If the dispersion is normal, we have

dark soliton, but normally we do not deal with the dark soliton we, because its intensity is

vanishing.

(Refer Slide Time: 28:24)

Well finally, we have some sort of application of optical soliton. There are a few fields where

optical solitons are applied, mainly in optical communication, where soliton beats are there.

So, soliton beats basically gives you, because it is a stable structure, it will propagate without

any distortion.

So, we have an application in optical communication. Then in pulse compression, because

optical soliton for femtosecond laser with different mechanism, we can reshape the pulse and

even we can compress the pulse with different mechanism. If the optical soliton is evolved

then we can manipulate these things by putting some.

Some sort of external effect and reshaping these things, which is also useful for different

application  and  for  femtosecond  laser,  we  can  do  that  super  continuum.  Generation  is

something very important in these days, where we can generate an optical spectra, which is

very wide and this can be generated by generating optical soliton.



So, if I generate optical soliton they can move and under some perturbation, they can break to

several solitons and as a result we can have super continuums which is basically some sort of

spectra ranging from say 400 nanometers, typically 400 nanometers to 2000 1800 nanometer

and so on. So, this wide spectrum we called super continuum and then finally, soliton logic

gets are something where we can use this soliton, and these are the few applications we have.

So, well now, we are almost in the end part of these things. So, today is the last class as I

mentioned, I do hope you people enjoyed this course. So, I tried my best to put all the results,

all  the  derivation  as  much  as  possible,  but  I  strongly  suggest  you  to  please  do  all  this

calculation by your own hand. In many books you find the calculations are not there.

In this particular course one of my emphasis to put all these calculations there in the slides.

So,  that  you can understand how these things are  happening;  what  is  the physics? So, I

believe it will be helpful, this course will be helpful for all of you and hope for the best and

thank you, for your attention and your support with this note let me conclude here.

Thank you and good luck for your exams.


