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So welcome  student  to  the  next  class  of  Introduction  to  Non-Linear  Optics  and  Its

Applications. So, we are almost in the finishing line of our course. So, today we have

lecture number 59.
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And today we will going to learn the Non-Linear Pulse Propagation. And this non-linear

pulse  propagation  mainly  governed  by  one  very  important  equation  or  well  known

equation called non-linear Schrodinger equation. So, today we will going to derive this

equation to understand exactly what is going on when a wave is propagating in a non-

linear medium.
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So,  let  us  start  with  the  previous  classes  result  which  is  the  Gaussian  wave that  is

propagating in a linear medium, the linear medium contain the dispersion term. And if

we see this is the Gaussian envelope we had and the solution is of the form this. So, at is

the solution of the pulse envelope, at time domain and in order to find the solution in the

time domain, we need to put the information here at this point A 0 omega which is the

frequency of the wave or the frequency component of the wave at z equal to 0 point.

Again that information one can transform with the fact that if the input pulse shape is

known in time domain, this is the input pulse shape A 0 T. In the time domain and if I

make a Fourier transform of this, then we will have the value of A 0 omega and if I put

this value of A 0 omega here, then we can readily have the solution which will be in this

form if the input pulse is Gaussian. So, that was the small exercise I already mentioned

in the last class that we should do, this exercise and if you do carefully and correctly,

then you will have this kind of expression.

So,  if  you  look  very  carefully  this  expression  if  I  compare  this  input  and  output

expressions, then you will find there are certain changes, one change is here which is

width  so,  first  width  is  changing.  Secondly,  amplitude  part  is  also  changing  if  you

carefully see if beta 2 is equal to 0; that means, there is no dispersion then the amplitude

becomes 1, but if beta 2 is not equal to 0, then we have amplitude and this amplitude has



a real and imaginary part or some sort of complex amplitude, not only that the amplitude

is also reducing because of this part.

So, amplitude is affecting and finally, and finally this entire pulse is having some sort of

phase here, in the input we find that only envelope term is there and everything is real

there is no phase term, phase means there is nothing relate e to the power i phi kind of

term.  Only  thing  is  that  we have  a  real  amplitude  here,  but  if  I  write  this  equation

properly this expression properly then we should have a phase term here so, phase is

evolving.

 So, we find that even the pulse is propagating in linear region, the width amplitude and

phase all are changing for a Gaussian input pulse.
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Now, if I find this try to find this thing, then I can have some kind of expression of the

pulse width and the phase which give us important informations, this is the pulse shape

Gaussian pulse shape that we had so, we had the Gaussian pulse shape and then this

Gaussian pulse shape is written in terms of amplitude and phase as I mentioned.

If I calculate this phase then I will have this term this big term, if you calculate properly

then you just you should have this kind of term, where we introduce a new term L D

which  is  called  dispersion  length  dispersion  length,  L D is  nothing,  but  T 0  square

divided by mod of beta 2, this is the quantity we called L D and everything is written in



terms of L D, this is called the dispersion length T 0 square divided by beta 2 T 0 is the

pulse width at z equal to 0 point and beta 2 is a dispersion coefficient.

If you carefully look the unit of these things, then L D is a since it is a unit of length

because it is representing some sort of distance, then right hand side should be the unit of

length also. So, here t 0 will be unit of say Pico second and T 0 square will be of the this

will give you Pico second square the unit and beta 2, we know that is the dispersion

parameter and its units is Pico second square per kilometer normally, this is the way we

represent  the dispersion coefficient  Pico second square per  kilometer  or  Pico second

square per meter.

So, now if I make T 0 divided by mod of beta 2, you can see that the unit of this quantity

become kilometer so; that means, it is a unit of length that is why L D basically represent

a dispersion length. And this length become very very high, when beta 2 is very small

that means, if the dispersion effect or dispersion coefficient is small, we should have the

dispersion effect at very long distance that is the physical meaning of these things well. 
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If I now look this term which basically suggests the evolution of the width pulse width,

then you can see that if I increase z, then the pulse width will going to increase. So, if

this is my input pulse which is some sort of Gaussian shape, having some initial width

according  to  our  notation  it  is  T 0,  then  after  the  propagation  distance  it  should  be

something like this, amplitude will decay and width will going to increase this is in time.



So, this quantity is nothing, but T prime which is a function of z and how, T prime that is

the width of the pulse will going to increase is given by this expression.

You can readily find this expression if you write this equation in amplitude and phase

form that is written. So, as I mentioned this is given to you as a home task. So, you

should do that and just find the wave in this particular form and you will get this width.

After having the knowledge of the width the next thing is to find out the phase which is

written here and, also we can see that phase is changing and not only that phase is a

function of time. And now here we find that phase is a function of time and it is a T

square.

We know that  the  frequency instantaneous  frequency we mentioned that  in  a  earlier

classes.
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Instantaneous frequency which may be a function of time is represented by minus del phi

which is a function of time del T, if I make a derivative with respect to T of a phase phi,

then  we have  instantaneous  frequency. But  if  you make  a  double  derivative  of  that

quantity, then we have something called chirp, here you can see that this quantity has T

square so; that means, I can essentially make a double derivative and if I make a double

derivative of this quantity I should have something called chirp.



So, the chirp basically a function of z here and what is the meaning of chirp; that means,

the frequency distribution is not uniform. So, if this is my wave this is the envelope and

this is the wave this is the distribution of the frequency inside the wave, it is a wave

packet lastly we mentioned that. So, this is a some sort of uniform frequency distribution.

So, if I write this frequency at omega 0 inside the wave packet, we have a frequency

distribution omega 0.

But the same thing if it is chirped, if I draw that this is the freq envelope and for the

chirping case, what happened this frequency distribution is not uniform some part of the

frequency may be small and some part of the frequency may be large, when I plot this in

time say T and it is changing linearly over the time, which basically gives this form. So

that means, when the pulse is propagating in a dispersive medium what happened that the

amplitude of the pulse will go down width of the pulse will go will increase and at the

same time the pulse will be chirped.

Now, if we remember that what happened in self phase modulation case, then similar

kind of effect was there. And there also we find if you remember that was the distribution

of  intensity.  And  if  I  make  a  derivative  of  distribution  of  the  intensity,  then  it  was

something like this. And based on that we find there is a chirping of the pulse. So, self

phase modulation is the effect where also we have chirping you should keep it mind that

dispersion  effect  individually  gives  something,  which  is  chirping  and  self  phase

modulation also give something which is chirping.
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Now, with this knowledge we can now have a concept of soliton. So, what happened

when the pulse is moving individually in dispersive medium, individually in non-linear

medium and dispersive plus non-linear medium both. So, what happened let us try to

summarize this. So, this is the input pulse in time domain, when it is moving through a

dispersive medium only dispersion take places and when the dispersion takes place then

what  happened,  there  will  be  a  temporal  broadening  as  I  mentioned  the  pulse  will

broaden in time domain.

So, this is time similarly if the same pulse is moving in a medium, where dispersion is

not there only nonlinearity is there we should have a spectral broadening the specter will

broaden,  whatever  the  specter  you have  it  will  broaden.  So,  here  we have  temporal

broadening here, we have spectral broadening. In this case we have chirping here also we

have some sort of chirping. So, now, the idea is if the dispersion on non-linearity is put in

such a way that, they can counterbalance each other, that there is a possibility that these

temporal  broadening  can  be  restricted  as  well  as  this  spectral  broadening  can  be

restricted and as a result,  we will have something where there is no change of pulse

shape this is called the shape preservations. 

So, I can preserve the pulse shape by adjusting the dispersion and non-linear parameters

suitably. So, that there is no change in pulse shape in time domain as well as frequency

domain.  So,  this  thing  is  called  soliton.  So,  soliton  is  something  where  soliton  is



something  where  the  shape  of  the  pulse  width  will  remain  conserved  during  the

propagation.

So, this is the robust structure so, when a optical pulse is moving in a medium, where

dispersion  and nonlinearity  is  there.  And the  value  of  dispersion  and nonlinearity  is

maintained  in  such  a  way,  that  the  effects  of  dispersion  and  nonlinearity  are

counterbalanced by each other, then we have a pulse which does not change it is shape.

So, this is the basically the concept of optical  soliton,  we will learn more about this

soliton maybe in the next class.
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But try to understand what will happen inside the pulse. So, as I mentioned during the

dispersion,  we have some sort  of chirping and due to the nonlinearity  the self  phase

modulation, we have also some sort of chirping. So, here in this schematic plot I have

shown that this is a pulse which chirping you can see that, this portion of the pulse is

very  fact;  that  means,  the  frequency  is  decreased  here,  but  here  the  frequency  is

increased linearly there is a change of frequency inside this pulse. So, that is called the

chirp.

But for nonlinearity what one can do that they can have a similar kind of pattern of

chirping, but in the opposite direction so, if it is t. So, here in the leading part of the

pulse, we have small frequencies and the frequency get higher and higher in the later part

of the pulse. So, exactly the opposite that we have in dispersion. So, if I add these two



things then what happened these things will be counter balanced by this one, this part of

the pulse will be counter balanced of this part. And as a result we have something where

the frequency distribution is uniform so; that means, there is no chirping and the shape of

the pulse remain conserved, this is essentially the optical soliton.
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Well, once we have the idea optical soliton now, it is time basically to understand how

this  optical  soliton  is  evolving  and  what  should  be  is  a  governing  equation,  this

governing equation is essentially the non-linear Schrodinger equation, it is a very famous

equation.  So,  in  non-linear  Schrodinger  equation  what  happened  that  if  I  take  this

equation  which  is  the  Maxwell’s  equation.  From this  Maxwell’s  equation  non-linear

Maxwell’s equation, we can derive our a non-linear Schrodinger equation.

So, previous in the previous class base, we have we start with this Maxwell’s equation

non-linear  Maxwell’s  equation  and  mentioned  that,  if  P  non-linear  is  0  I  have  the

equation of motion equation of this electric field. And this equation of electric field was

governed by these two parts. Now, we include the non-linear part so, when we include

the non-linear part what happened so, this is mu 0 mu 0 epsilon. So, I can write this

epsilon omega as epsilon 0 E r and mu 0 as 1 by epsilon c square.

And then I can put this side and I can write here in this case 1 by c square d 2 E and then

n 0 square E plus 1 by epsilon P non-linear. So, just manipulating whatever the equation

is written very simple, then P non-linear is epsilon 0 chi three E cube. Now, E is the



electric field so, if E is the elliptic field. So, I can write this electric field really electric

field in this form E cube, I can write by making a cube and then I can write it is as 3

omega omega component that, we have already done when we are dealing with the self

phase modulation.

Next  if  I  put  this  here  in  this  equation,  then  what  happened  that  I  should  have  a

frequency component 3 omega and the frequency component omega. So, frequency of 3

omega  component  is  basically  give  us  the  third  harmonic  generation  part.  So,  third

harmonic  generation  part  we  may  neglect  it  at  this  point,  because  third  harmonic

generation requires some sort of phase matching to evolve. So, if the phase matching is

not there, which is the case in general then only this three omega part is there. So, E cube

is essentially E 0 cube by 4 into 3 cos omega T.

So, this 3 cos omega T I can write E 0 cos omega T which is E and I can take this E

outside. So, another term is there which is E 0 square so, E 0 square can be represented

in terms of intensity so, if I do all this manipulation, then this portion which is given in

the red line can be simply written as n 2 square E, where n n square E where n is some

sort of intensity some sort of refractive index depending on intensity that is important.

So, the entire equation become simplified with the fact that now, whatever the refractive

index we have it should have an component of intensity well.
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Next we will write the equation whatever we derived and this equation suggest that, this

will be my equation now to solve this is the non-linear equation and the nonlinearity is

introduced here. In linear case the form of the equation looks quite same the form of the

equation was this, it was just omega and when refractive indices represented in terms of

omega only; that means, this is the linear case. So, we were doing the same thing, we are

having a same kind of expression even by introducing nonlinearity.

But here you should remember that n is now function of intensity also. Now, we know

that whenever we have this kind of equation in our hand it is easier to solve it in Fourier

domain and, if I try to solve this in Fourier domain, which we have done in the previous

class also the technique we discuss in the previous class. If we apply the similar kind of

technique we will find that this equation can be simply written in Fourier domain like

this.  So,  this  derivative  d 2 d square derivative can be simply represent  replaced by

omega square and the electric field is now in the Fourier domain. So, it should be E tilde.

So, this equation is relatively easy to solve. So, that is why we write this  in Fourier

domain. Now, if I want to solve completely, then the I need to write the electric field in

total form. The electric field in Fourier domain can represent it total form, this is the

envelope part and this is the field distribution, when we write the electric field so; that

means, electric field should have two component, say this is my laser light this is that,

this is the laser light that is falling on some wall or something.

So, there is a distribution over space. So, this space distribution is represented by this r

phi coordinate and also there is a temporal distribution of this pulse if it  is from two

second  pulse  this  pulse  is  distributed  in  time  domain  so;  that  means,  some  sort  of

component  should  be  time  component  should  be  there  here  it  is  written  in  Fourier

domain. So, we have the frequency component and it has some sort of frequency and this

frequency and the propagation constant this component should also be there.

So, there is a complete form of electric field, in terms of spatial distribution and temporal

distribution. So, now, this grad square operator can be divided into two part one is the

transverse part and another is the longitudinal. So, if this is the waveguide or the fiber, if

I consider this is a fiber. So, it is moving like this is the core of the fiber and if the

electric field is launched here it will  move along this direction z. So, there will be a



spatial  distribution,  we call  it  more and along the z it  will  going to evolve and, this

evolution along z can also contain the modal part and the temporal part.

So, the pulse which is distribution in time domain can move along z and we should have

some equation for this pulse distribution also which is a entanglement.
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So, if I now extract the these two parts separately, then grad square E I can write simply

the derivative. So, grad square is first the derivative with respect to z square plus the

transfer component which is r phi component. So, when we when we apply that over E.

So,  separation  of  variables  suggest  that  only  the  F, this  we will  operate  only  the  F,

because F is a function of r phi. So, this quantity will remain outside of the operator.

In the similar way when we make a derivative with respect to z, we should have F r phi

outside and all these things here. So, here you should note that when I make a derivative

of the quantity, this I should have a double derivative with respect to z, but this quantity

is very very less than the first order derivative of the envelope. So, we can neglect that

this is essentially the slowly varying envelope approximation.

So, when I make a slowly varying envelope approximation, we just neglect this term and

we have this term in our hand. So, this is again something we have done before. So, this

is not a very new thing only thing is that here we have we are dealing with two different

part of the equation one is related to F. And another is related to a tilde. So, now, if I



complete right completely due to this equation I will ended up with this and if I make a

separation of variable thing, then I can put this one side and the envelope term in other

side.

This is a function of r phi this is a function of z only. So, when these two are equal then I

can write this as a function as a constant, we call this constant beta, beta is essentially the

propagation constant of a system when the nonlinearity is there. So, eventually we have

two equation  in  our  hand one is  the field  equation  this  and another  is  the  envelope

equation. We will write now we will not bother about this field equation rather, we will

try to find out how these envelope equation basically give us this non-linear Schrodinger

equation.
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So, beta 2 this quantity I can simply write this which we had done in our previous class.

So, this basically simply become the envelope equation. So, 2 omega 2 beta 0 term will

cancel out both the case both the side. And we will have that, now the beta which is a

propagation constant, I can write it in the two part which is the linear propagation part

and  due  to  the  nonlinearity  the  propagation  constant  may  change.  And  I  write  this

propagation changing propagation constant at delta B N L.

Next what we will do we just expand this linear part. So, if I expand this linear part it

will be beta 0 first order derivative of beta omega minus omega 0 second order derivative

and so, on plus delta beta N L, now beta minus beta 0 if I take up to this will be simply



this quantity. And now I replace omega minus omega 0 to the derivative so, omega minus

omega 0 I can always rip the last class, we have done this we have shown this, but we

can change it to this operator.

So, when you change this operator; that means, these things I put here. So, this operator

is basically will operate over A which is in frequency domain so; that means, I need to

change this A to time domain, because now I change the entire part in time. 
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So, if we do that if we do that then we will have this expression, this is a derivative first

derivative and this  is  a second derivative  corresponds to omega minus omega 0 and

omega minus omega 0 square term and delta beta N N L will be there.

So, now here I have this part and the rest of the part I write this we know this, because

this is basically the transformation that we are looking for and this transformation is t

minus z by v z,  when we have this  kind of Galilean transformation,  we are moving

basically the group velocity of the pulse. So, this coordinate is now changing to t, what

about delta beta delta beta N L is the non-linear propagation constant which is the N 2 I k

0  and I  can  write  it  as  n  2  omega  c  effective  P. And  essentially  we will  have  this

expression in our hand.
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 So, let us see what else so, this basically expression can be now written by putting some

kind of rescaling and, when you put this rescaling stuff, we have this P I can write it as I

integration of dx dy. And I again I write in terms of a square mod of a square because

intensity can be represented in the field squared term. So, field square is a square and

also this F and if I write this entire stuff as a constant K, then a my rescaling is this.

So, if I rescaling make a rescaling of this equation, then I will ended up intercept which

is a well known non-linear Schrodinger equation. So, this is the equation which is a non-

linear Schrodinger equation. So, in the next class we will again discuss about the non-

linear Schrodinger equation and try to find out what should be the solution of this non-

linear Schrodinger equation and how this solution leads to optical soliton. So, with this

note let me conclude here.

Thank you for your attention and see you in the next class.


