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So,  welcome  student  to  the  next  class  of  Introduction  to  Non-Linear  Optics  and its

Application. So, today we will have lecture number 33. So, today in the lecture we have

two very important topic.
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One is  the Manley-Rowe relation  for  3 wave mixing.  This  relation  we have already

discussed for the second harmonic generation when we are discussing about the second

harmonic generation process, we have already discuss in detail. So, again this equation

will come into the picture when we deal with this 3 wave mixing. This is the general

form of the second harmonic generation then a we start a concept call Parametric down

conversion.

So, what is parametric down conversion we will try to find? So, the name suggest that

we will try to down conversion the there is some sort of down conversion in frequency.

So, in second harmonic generation we are launching a frequency omega and getting a

frequency 2 omega. But for parametric down conversion what happened that we like to



launch a frequency of 2 omega and try to find out whether we are getting to getting a

frequency sub harmonic like omega naught.

So, how this process one can initiate and what is the condition to generate this kind of

sub harmonic generation we will try to find out. So, let us go back to our slides.
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So,  in  3  wave  interaction.  So,  we  introduced  some  kind  of  nomenclature.  So,  this

nomenclature are very important that we called the omega p as pump the frequency of

the pump, omega s as the frequency of the signal and omega i is a idler. So omega p,

omega s and omega i they are related to a very simple equation omega p is equal to

omega s plus omega i.

So, when I try to find out the sum frequency then we can say omega s plus omega i is

equal to omega p. So, omega p is basically the sum frequency and the different frequency

we can generate through omega p and omega s and omega p minus; omega s is our

different frequency. And omega i is represented by omega p and omega s is given the

corresponding different frequency.

In all  the cases what happened that  we should launch the signal both the cases.  So,

omega s is the signal that we will launch both the cases. For some frequency with omega

s we launch omega i, for different frequency for omega s we launch omega p that is the

difference well.
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So, in the next slide we will have the expression of the electric field that we defined in

our last class. So, this expression is straight forward that we have an amplitude of pump,

signal and idler as E p E s and E i. The phase is associated with all the expression and

inside the phase we have a propagation constant k p k s and k i for three cases and also

the frequency omega p omega s and omega i. So, 2 frequency 3 frequencies are there

omega p omega s and omega i and they are related to omega p is equal to omega s plus

omega i as usual. 

So, this equation always valid, we need to consider that omega p is equal to omega s plus

omega  i  this  equation  is  always  valid.  So,  this  is  our  fundamental  some  sort  of

fundamental equation. So, based on this equation whatever the treatment we will do that

all this treatment.
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So,  today we will  try  to  find out  the Manley-Rowe equation.  So,  the  Manley-Rowe

equation is something which gives us the conservation of energy or the conservation of 4

numbers. 

So, here if I if we see we will find one important thing, pump is represented by I p

multiplied by A, A is a area. So, we know that the intensity is half of epsilon 0 cn p and

mode of E p square for pump multiplied by A. If I make a derivative with respect to z of

this pump then we will have this term half epsilon 0 cn p A which is constant.

And then the derivative of this quantity which is not squares, so two term will appear

because E p star E p is our mode of E p square. So, when you make a derivative there are

two functions so, that is why we will first case we have E p then d dz of E p then E p d

dz of E p star. So, once we have these two terms then the next thing is that we will going

to replace this quantity, we will going to replace this quantity. Already in the previous

class here all the E p E s E w term is there, but in the previous class we have already find

out d E p dz was i d omega p n pc E s E i e to the power of i delta k. This was the term;

this was the expression that we had derived in our previous class.
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So, now what we will introduce one term called kappa p which is d omega p divided by n

p into c then this expression can be simplified.

(Refer Slide Time: 07:27)

And this expression is now d of E p dz is equal to i of kappa p E of s E of i e to the

power of i delta k z, I just replace this thing here. So, E p star multiplied by this quantity

i kappa kappa p E s E i and e to the power of i minus of delta k ok, in this case there was

a minus sign if you remember the previous class. Also, I replace this which is nothing,



but the star of this things when I make a star so, one negative sign will have and this term

will plus.

So, we will have a negative sign and plus here and also E s will become E s star and E i

become non-star because E i so, here we have star. So, this then E both the cases there

was no star. So, it will be E s star E i star ok, this is right. Now, what we will do we will

just take kappa p common then i A by 2 epsilon 0 cn p kappa p.

And inside this bracket we have E p star E s E i multiplied by e to the power of minus i

delta kz and E p star E s E i star e to the power i delta kz; further I can simplify. So, this

epsilon 0 cn p kappa p can be simplified to as epsilon 0 d omega p. Why? Because

epsilon 0 cn p multiplied by kappa p and what was my kappa p, kappa p was simply d of

omega p so, divided by n p of c. So, this n p c n p c will cancel out we will have d of

omega p so, which is here.
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Next we will have this form. So, now, in the exactly in the similar way just using other 2

equation, just using other 2 equation d E s dz is equal to i kappa s E p E i star e to the

power of i delta k z; this was the expression of E s d E s dz. And in the similar way we

have another equation that is this i kappa p kappa i E p E s star e to the power i delta k z.

Using these 2 equation again we can find out what is the value of the term dP s d z and

dP i dz.



And if you calculate I again I ask the student to do this calculation by yourself and you

will get a result something like this and this. And if you compare these three result you

will find that whatever you are getting here exactly a similar term you will get here and

here; in case of signal and idler. Only difference between these and this is one negative

sign and if you have a negative sign here and here, because it is E p E s E i it is E p E p

star E s E i, but here you have a E p E s star E i star which is this term and this term is

here.

So, one negative sign is related to this and once you have a negative sign for all these

cases then these 3 equation can be represented in terms of a more general equation if I

divide this 1 by omega p here than the right-hand side will be 1 by A 2 and epsilon z and

this in the bracket.
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The similar way if I write 1 by omega s here so, this omega s will not be there and we

have these something in bracket. So, these and this term 1 by omega p, this term and this

term are negative to each other. So, this is equal to minus of this, in the similar way this

is this term are same. So, I can write one expression that 1 by p with the negative term dP

dz is equal to 1 by omega s dP dz is equal to 1 by omega i dP i dz. So, this equation

which is in the bracket or which is in inside this box is called the Manley-Rowe relation.

This is the same equation that we have derived in case of second harmonic generation.

We are eventually getting the similar kind of equation, but since we are dealing with 3



waves this equation looks slightly different. And instead of having 12 equation 2 relation

we have 3 expression because of the signal idler and pump. Now, if the signal or idler are

same then we have a two term here and these two term basically suggest that we are

generating second harmonic.

But  here  since,  we  are  not  considering  explicitly  the  second  harmonic  is  generated

because second harmonic is a special case. So, if any frequency omega s and omega i are

generated from a pump omega p and then I can write this Manley-Rowe equation. And

this Manley-Rowe equation suggest that they should follow this identity.
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From this Manley-Rowe equation we can further derive important outcomes. And one

important outcome is this is our Manley-Rowe equation that 1 by omega p P s is equal to

1 by omega s 1 by omega i P i dz. If this is a constant gamma then I can write dP dz dP

dz. So, I can write this right dP dz is equal to minus of omega p gamma d of P s dz I can

write omega s of gamma and d of P i dz I can write omega i of gamma.

Now, if I add these three things together like we have done here so, gamma will  be

common and we can write omega i plus omega s is minus omega p this. Now, we know

that omega p is equal to omega s plus omega i that is true in all cases. So, from this

equation I can write that this term is 0. So, total power if I write P p plus P s plus P i so, P

this equation is nothing, but d of d z of P; gamma is here which is multiplied by this



quantity which is 0. So, eventually we have dP dz where P is a total power is 0 or the

total power is conserved.

So, Manley-Rowe equation is nothing, but the conservation of total power or the total

energy. So, this is a another representation to show that from Manley-Rowe relation I can

or  we  can  derive  a  important  thing  which  is  the  conservation  of  total  energy.  So,

whatever the three expression we derived so, this three expression are consistent with the

conservation of energy.

And that is important and we to show that this is really conserved the total energy. So,

even though the energies are exchanged between pump and signal and idler, but every

time the energy governs that every time the total energies are remain conserved. Here we

show that the Manley-Rowe equation for these three expressions are in such a way that

they can conserve the total power or the total energy. So, conservation of energy is valid

here for this 3 equation that we have derived for pump signal and the other and idler ok.
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So, now, we will go to the another thing that is parametric down conversion. So, here

what we are doing that  in nonlinear crystal  used to split  photon beams into pairs  of

photon that, in accordance with the laws of conservation of the energy and conservation

of momentum; that means, we are launching 1 photon and this photon can splits and

generate to other photons.



So, in general if I write in general way. So, omega is a photon. So, omega 3 and it is

divided to 2 photon omega 2 plus omega 1. So, from 1 photon I can generate 2 photons,

but the generation in such a way the generation should be in such a way that the loss of

energy and momentum is conserved. So, what is the energy here total energy if h so, h

cross omega 3 this is the energy of the omega 3. It is from this we are generating 2

photons.

So, the energy of the 2 photons is h cross omega 1 and h cross omega 2 and h cross

omega 1. So that means, the energy according to the conservation of energy my omega 3

has to be equal to omega 1 plus omega 2 that is my 1 equation; is a conservation of

energy equation.
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Now, for this same treatment from where were getting omega 3 is split into 2 photon

omega 1 and omega 2; the momentum has to be conserved also. So, k 3 which is the

momentum or the propagation vector has to be equal to k 1 plus k 2. This k 3 equal to k 1

plus k 2 is nothing, but the phase matching condition; this is another way to write the

phase matching condition. So, this momentum and energy conservation is valid. What

happened in under that condition, if we split 2 photons that or from 1 photon 2 photons

are generated or 2 photon are merging to generate 1 photon that we try to understand.

So, here in the second harmonic generation process we find that for 2 photon is merging

to generate 1 photon of frequency 2 omega and readily we can see that the energy and



momentum conservation are valid. Here in the next case what we try to do that we try to

generate  2 photon of frequency omega, but we are generating that from 1 photon of

frequency 2 omega.  This  is  some sort  of  frequency down conversion that  we try to

generate sub harmonics. So, energy conservation again this is a degenerate case omega 1.
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So, previously what I say that omega 3 was equal to omega 1 plus omega 2. So, if omega

1 and omega 2 are same then it is nothing, but the second harmonic generation. In the

similar way, I can write that for degenerate case I can generate 2 omega from 2 omega I

generate omega 1 omega and omega because, omega 1 and omega 2 same right now. And

a momentum conservation suggest that this is something like this which is nothing, but

the collinear phase matching kind of stuff. 
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Now, the  question  is  really  it  is  possible  to  generate  or  not?  It  is  really  possible  to

generate. So, in parametric down conversion what we are trying to do from 2 omega to

omega I want to generate; 2 equations should be in our hand and these 2 equation is this.

This 2 equations the governing equation of the fundamental wave and second harmonics

so, now I generate second harmonic two fundamental. So that means, I am generating E

1 in our case delta k is a phase matching, we considered the phase matching is already

there; that means, the momentum conservation is already valid. 

So, momentum conservation is valid, energy conservation is valid. So, now, our aim is to

find out whether we can generate some kind of sub harmonic under this kind of condition

or not. So, sub harmonic means try to find out the evolution of E 1. Under no depletion

approximation E 2 is constant and E 1 is 0. So, what is going on here if I write, if I draw

a picture here this picture should be something like this.



(Refer Slide Time: 22:21)

 This is E 2 with frequency 2 omega and try to generate here E 1 with frequency omega.

The question is really it is possible to generate? This is at z equal to 0 so, at z equal to 0

what happened there is no wave of frequency omega. So, this quantity has to be 0. This is

our boundary condition fine.

So, two condition we consider one is E 2 is constant and another is E 1 0 is 0. We have

this expression in our hand so, what we do you make a second derivative to solve this

equation. When you make a second derivative one equation will come as dE 1 star dz,

here E 2 is constant so, there will be no derivative of this term..
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Once we have this, then the next thing is we just replace in terms of d E 1 star dz; we

replace because d d E 1 dz already we know this is the value. So, I need to replace this

minus i because complex conjugate of this will be d 1 star dz. So, it will be d omega n 1

c E 2 star E 1; here should be star and this should be E 1 because I making a complex

conjugate of that. So, I just replace this things here as I do and once I replace this thing

here; then I can find the this i i will remain 1 d omega n 1 c d omega n 1 c E 2 E 2 star.
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So, I can write it in this way omega d divided by n 1 c whole square of that and mode of

E 2 square and E 1. The next thing one can do is make this entire thing as a constant

because omega d n 1 c these are constant. And E 2 is a is a pulse here or E 2 is a field

associated with the second harmonic or the frequency 2 omega and from the beginning

we considered this is very strong. So, we can consider this has a constant also.

So, that is why we write a constant here gamma which is this. So, gamma is omega d n 1

c square and mode of E 2 square we write it as gamma square. So, the total equation

become simplified and we have in our hand is second order differential equation with the

form d 2 E 1 divided by dz square is equal to gamma square E 1. This is a second order

differential equation and also we know what is the solution of that. So, what kind of

solution we will have? 
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So,  we  will  have  a  sin  hyperbolic  kind  of  solution  or  cos  hyperbolic  of  solution.

Eventually we have a exponential hyperbolic solution and this exponential hyperbolic

solution one can write very easily with this sin and cos hyperbolic. So, this is a general

solution. Now, if I put the boundary condition so, the boundary condition. suggest that E

1 is z equal to 0 because at the beginning there is no sub harmonic waves.

So, if I do then readily at if I put z equal to 0 then I readily can see that this is 0 and this

is 1. So, we have B, but the entire thing is 0 means B equal to 0. So, E of 1 0 which is B



and this quantity is 0 ; that means, B is equal to 0. Once B is equal to 0 I can eliminate

this term. 
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So, we will have simply A 1 sin hyperbolic gamma z as a solution of E 1 z. Next thing is

to find out A and in order to do that what we will do, we just make a derivative of this

term. If I make a derivative we know that d E 1 dz is i d of omega n 1 c E 1 star E 2 that

was our equation. So, this quantity at z equal to 0 if I want to find then it will be i omega

d n 1 c E 2 at z equal to 0 and E 1 star at z equal to 0.

Now, E 1 star at z equal 0 is 0 because I consider we considered there is no field. So, E 1

at z equal to 0 and E 1 star at z equal to 0 at the same thing here amplitude is not there or

vanishing so, this quantity is 0. From here also we can find out d E 1 dz, if I do then I

will have A gamma cos hyperbolic of gamma z at z equal to 0. So, at z equal to 0 cos

hyperbolic of gamma become 1. So, we have A gamma equal to 0 or from here we can

see gamma is a constant so, A equal to 0. Already we get B equal to 0 now; the next thing

I get is A equal to 0 A equal to 0. So, once we have A equal to 0; that means, the entire E

is vanished there is no E 1.
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And that is interesting that here gamma is not equal to 0 as I mentioned. So, A is equal to

0 which means E 1 z equal to 0; that means, there should not be any so, the thing is that

we will have 2 omega here which is launched. This is the medium where chi 2 is not

equal to 0, but this medium suggest that there should not be any kind of omega field

generations. So, omega field will not going to generate so that means, there will be no

sub harmonic generation.

But in generally we find that the sub harmonic are still generating; that means, if I launch

0 omega, omega can be generated.  So, classically we find that there is sub harmonic

generation is not possible unless, we put some kind of varies tiny amount of electric field

here with field omega. So, I need some amount of omega. So, the boundary condition E

1 at z equal to 0 should not be 0 that is boundary condition we now, put to generate some

kind of sub harmonic classically.

But quantum mechanically we can see that some kind of quantum noise should be there

and  because  of  this  quantum  noise  there  is  a  possibility  that  we  can  generate  sub

harmonic. So, without any quantum noise it is not possible to generate. So, in the next

class so, let me conclude here today. So, so far we are dealing with the sub harmonic

generation.

So, this is a parametric process; that means, I am launching 2 omega and try to generate

omega. And this process classically it not possible in this process, we find that classically



it is not possible to find out any kind of sub harmonic waves. In order to generate sub

harmonic waves what we need to do, there we need to put some kind of input of this sub

harmonic field. And in the next class you will find that even if I put the input that may

not be amplified.

So, there is a possibility that even if I put some kind of input value in terms of E 1 or the

fundamental wave; so, it will not going to increase and it may be decrease depending on

the phase, initial phase of the system. So, in the next class we will find out how the phase

will  be  important  here  and  this  phase  sensitive  amplification  and  phase  sensitive

attenuation we will discuss in detail in the context of optical parametric amplification.

So, with this note let me conclude here. So, in the so, see you in the next class and,

Thank you for your attention.


