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In the case of small Bragg angle diffraction by acoustic waves, we have seen that the

incident optical beam travels almost along the direction which is normal to the direction

of propagation of the acoustic wave. And we saw that there could be A plus order or

minus order, and from there we obtained the conditions the Bragg condition. And now

that we will consider the case when the incident beam optical beam is at large angle,

large  angle  of  incidence  that  is  almost  close  to  a  90-degree.  In  that  case,  we  can

approximate that the optical beam is almost parallel to the direction of propagation of the

acoustic wave.

And we will bring out the Bragg condition, in this case we will also use the k vector

model to understand how this diffraction. We have seen that the plus order and minus

order cannot exist simultaneously.

(Refer Slide Time: 01:33)

 So, this we will be discussing starting from the basic coupled wave equations, and we

will impose the condition of large Bragg angle diffraction.
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Then we will look at the condition for coupling for this case. Then in this case also, that

is for a large Bragg angle diffraction, we will have codirectional and contradirectional

coupling; that is the coupling may take place along the direction of the incident beam or

counter to the direction opposite to the direction of the incident optical beam.

We look at the power transfer equation efficiency and the use of Bragg reflection. This

will  help  us  understand how these  modulators  will  be  working based on this  Bragg

diffraction, when we will take up the discussion of the acousto-optic modulators on the

principle of based on the principle of Bragg diffraction.
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So, let us look at so, this is again the condition which will again see from this discussion

also the light wave, earlier it was incident almost you know normal to the direction of the

acoustic wave, and that case was small Bragg angle diffraction.

Now, if  it  travels  very close to  the direction  of  propagation like  in  this  direction  of

propagation of the acoustic wave, then we will call this is a these are the 2 distinct cases

of Bragg diffraction.
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So, in the case of large Bragg diffraction, the light wave will be traveling almost along

the direction of propagation of the acoustic wave.
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So,  this  is  this  picture  is  useful  to  understand  the  configuration,  acoustic  wave  is

travelling in this direction, and the light wave is almost along the same direction.

So,  the basic  set  of  3  equations  which we have seen starting from the couple mode

equations.  This A 0 and A 0 the amplitude  of the incident  wave is  connected to  the

amplitude of the first order, plus order diffracted wave and minus order diffracted wave,

through this here the phase of the incident wave is given by this alpha x plus beta z;

alpha is the x component of the propagation vector and beta is the z component of the

propagation vector. And likewise for the diffracted plus order diffracted beam, this alpha

plus  is  the  x  component  of  the  propagation  vector,  beta  plus  is  the  x  comp beta  z

component of propagation vector. And see that the z component of propagation vector is

modified.

And in the same way for the minus order diffraction, this alpha minus and beta minus

will  represent  the same quantity  respectively. This  equation  these  2 equations  are  to

connect this plus order diffraction with the with the incident beam amplitude, and this is

for  minus  order  diffraction  to  connect  the,  and  these  are  the  straightforward

consequences of the couple mode equations we have seen. So, this is the starting point,

here we will put the approximation that the beam is traveling almost along z direction.
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That is now the light wave travels almost parallel to the direction of the propagation of

the acoustic wave.

So,  we may neglect  the  x dependence  of  the  electric  field  amplitudes,  and then  the

coupled wave equation equations will reduce to this form. You see we have this del A 0

del x del A 0 del z. So now, that we have ignored the x dependence of this, because the

wave is travelling almost along the z direction. So, this part the z depend x dependent

part we can we assume that there is no variation along the x direction therefore, we can

rewrite this equation in this form.

You can see del A 0 del z and that connects to this part which remains like this. And this

is the other 2 equations that is for the plus order and minus order; where again we have

we have neglected the x dependence of the field amplitude of the plus order and minus

order diffracted wave. So, we arrived at a set of these 3 equations which are reduced

where we have neglected the x dependence of the amplitude. Now these equations these

equations will be valid.

So, again the x dependent factors should cancel out therefore, we must have see this e to

the power of I by alpha plus x, must be equal to e to the power of I by alpha x.
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And from here also so, during that alpha plus is equal to alpha, and or alpha minus is

equal to alpha. So, both the conditions have to be satisfied in this equation.

But that is not possible; it is not possible to satisfy both the condition simultaneously.

The amplitude A plus will be negligibly small. This is unless this condition is valid beta

plus equal to beta plus k, look at this equation you have beta, and this is your beta plus

minus k.

So, beta equals to beta plus minus k this condition, because they are in the form of the

exponential power. Here also so, they must be the coefficients must be equal so, this and

this must be equal. And similarly this and this must be equal. So, that is what is here beta

plus equal to beta plus k and beta minus equal to beta minus k. But both these conditions

let  beta  plus  equal  to  beta  plus  k and beta  minus equal  to  beta  minus  k,  cannot  be

satisfied simultaneously. They cannot coexist; we will see when we look at the vector

configurations  of  this  beta  k,  and or  in  terms  of  the components  of  the  propagation

vectors along the z direction.

You see that both the conditions are not possible to be satisfied simultaneously. Hence,

let us first consider one case that is one of them will be satisfied that is beta plus equal to

beta plus k. And in that case we will neglect A 0. As if this minus order diffraction is not

happening only plus order diffraction is taking place. So, in that case how we organize

the set of equations?
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Now, from here from here we can rewrite this equation del A 0 del z equal to beta by beta

z, this beta by mod of beta and sigma is actually if we rewrite that equation, we can write

this will be appearing on the right hand side, and for that we use this symbol sigma;

which is equal to because beta plus then omega 0 mu naught if you add one epsilon

naught here, then this will give you c square at the denominator. And this epsilon naught

will be appearing here. So, mu naught epsilon naught by epsilon naught; so, this will

give you 1 by c square. So, that is the reduced form, and this is useful for the coupling

coefficient calculation. And this A 0 we have written for this part that is beta mod by

twice omega mu naught under root of that into A 0.

So, this is the amplitude in the modified form of the incident beam, optical beam. And

similarly this is the amplitude of the first plus order diffracted optical beam. And this

condition this delta beta has appeared, because if we simply take into account this beta

minus beta plus minus k and this beta if you equate them. Then we can write that this

difference of these 2 things; beta minus beta plus plus k. So, beta plus k equal to beta

minus if it is not exactly 0, then in this case we will have delta beta.

So, this delta beta appears here, here also delta beta appear. So, this situation we will

correspond to codirectional coupling; that is, the incident beam and the diffracted beam

they are in the same direction, there will be in the same direction.
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We will see how it happens and A 0, A plus delta beta they are all defined here in this in

this equation. So, these are the coupled equations which couples A 0 to A plus; that is

incident beam to the coupled first order coupled beam.

Now, these factors A 0 and A plus are such that the powers carried by the incident and

diffracted waves this, and they will be like this. So, this mod of this square and mod of

this  square  will  represent  the  power  which  is  carried  by  the  incident  beam and  the

diffracted beam. So, if we now use this condition for the plus order diffraction. This will

represent the plus order diffraction. So, we will now we will consider the minus order

diffraction,  and  we  will  bring  out  the  same  condition.  In  this  case  sigma  will  be

represented by beta mod beta minus mod which will be appearing here in this.

So, these are the very simple and direct consequence of the couple mode equations where

we have used those conditions. Similarly, we get the sigma in this reduced form. And this

amplitude of the modified amplitude of the incident beam is this, they are the same, but

now it represents the minus order diffraction, and this is your delta beta the difference of

the propagation constants, z component of propagation constants.
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So, by doing so we could arrive at 2 possible situations, one is codirectional coupling

that is the incident and diffracted waves propagate almost in the same direction. As the

incident beam and the other situation is contradirectional. That is the incident beam and

the  diffracted  beams  will  be  traveling  in  the  opposite  direction;  that  is,  diffraction

diffracted beam will be talk traveling in the opposite to the incident wave.

(Refer Slide Time: 13:29)

So, these are the 2 situations this is quite self-explanatory, you have an incident beam;

which was trying to travel in this z direction. But the diffracted beam which we will call



the minus order, will be diffracted in this way, k is the direction of the propagation of

acoustic wave. And this is the case of the plus order diffraction that is the incident beam

direction,  and  the  diffracted  beam  they  are  almost  in  the  same  direction  so  that  is

codirectional.

(Refer Slide Time: 14:04)

Now, we will look at this codirectional diffraction.
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Look  at  this  you  have  your  incident  beam  whose  propagation  z  component  the

propagation vector is k which is this. And this propagation vector will be modified by



adding the propagation vector of the acoustic wave. So, this k plus capital K will be

equal  to  k  plus.  So,  as  if  this  is  the  consequence  of  this  is  the  consequence  of  the

modification of the incident propagation vector of the optical beam by the propagation

vector of the acoustic beam.

So, these 3 put together will form a triangle. And you directly get the consequence that is

beta plus. So, this is the z component of propagation vector in this case; if I take the z

component along this, then I take the z component of k along this. And k is already along

the z direction so, you have beta plus equal to beta plus k. So, this is again the Bragg

condition.
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So, for codirectional coupling this quantity beta by beta mod has to be equal to 1; which

will be again equal to beta plus 1, this is the consequence of this.

And then we have this modified form of this equation, because beta plus if you go back

and see this here, beta by beta mod this is for minus order of course, the same thing is

true for plus order as well. And condition that beta by mod of beta will be same, beta 1

mod of beta will be the same, and then we have this equation; which has come from here

beta by mod of beta beta plus by mod of beta plus will be put equal to 1 so, you get this.

So, differentiating this first equation, if I differentiate this with respect to z, you will get

D 2 A 0 dz square, and that will give you da plus dz in which I will substitute the value



of da plus dz here. So, after differentiating this we get a term which will be da plus dz; in

that place, we will substitute this and we will readily get this equation. Which is the

second order differential equation, but it is uncoupled now. The cost that we pay is that it

has become a second order differential equation.

The solution of this equation is similar to the small Bragg angle, and we have seen in that

case it was delta alpha, because the wave was traveling along almost along the x axis. So,

all the quantities will be modified, and we will get a set of equations to represent the

amplitudes of the electric field of the incident wave and the diffracted wave respectively.
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 Now if we put the condition in that equation that A 0 at z equal to 0 which is the initial

boundary condition that we assume the incident beam carries an amplitude of unity. And

the diffracted beam at z equal to 0, because there is no diffraction at z equal to 0 that

amplitude is equal to 0.

So, that is this condition if we impose we can bring out the relationship that is the, to get

the condition the constants of those are associated with the field amplitudes. And from

there this is exactly in the same way we did it for the small Bragg angle. So, it will be a

good task to carry out this algebra. And from there we can calculate that P 0 the incident

power will be A 0 of z square. This z is any intermediate proposition between z equal to

0 to z equal to D or z equal to A.



So, that appears in this form and P plus will be A z plus mod square which will be in this

form. So, if delta beta equal to 0, but these 2 equations they remind us about the these are

the similar equations that was used to describe the power coupling in directional coupler.

And this was this set of equations are similar to the equations which we used for small

Bragg angle.  So,  basically  the  principle  is  the  same in  all  these  cases,  the  coupling

principle;  that  is  why  the  equations  they  appear  to  be  similar  only  parameters  are

different, because of the orientation and configuration.

So, this is again very useful equation from here if you put the condition delta beta equal

to 0.

(Refer Slide Time: 18:52)

Then we will get the sinusoidal power transfer sin, cosine variation of the power transfer.

So, initially the entire power will be represented by cosine square, and the coupled power

will be represented by sin square of delta z; where delta will be the coupling coefficient,

this we have seen. So, eta the diffraction efficiency in this case from here will come from

here, because you see you can see delta beta delta. So, if you put this in this equation

sigma by delta, you will readily get this equation. And this expression will be useful will

be we will be using also for the efficiency of the modulator diffraction efficiency; delta

beta equal to this. Complete power transfer will take to the plus order only if delta beta

equal to 0.



That is beta plus equal to so; this will happen and the length of interaction will be pi by

twice sigma sigma is the coupling coefficient. And these are all the same that we have

seen in waveguide coupling, and also in the small Bragg or a Bragg angle diffraction

case. So, these are all in the same line only the parameters are changed.
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So, these to satisfy the condition, this alpha plus equal to alpha and beta plus equal to

beta plus must be greater than beta. So, the diffracted wave must correspond to a way

different value of this permittivity of the medium.

For example, the incident wave, and the diffracted wave may correspond to o ray and e

ray. So, because of this we will  see that it  can modulate  the polarization;  we have a

different  discussion about  how this  polarization  modulation  in  by this  acoustic  wave

takes place how it can modify the incident polarization to a different polarization in the

coupled wave that we will discuss. So, in codirectional interaction is highly wavelength

selective and therefore, it is used for making tunable acousto-optic filters. We will see

some examples later.



(Refer Slide Time: 20:51)

(Refer Slide Time: 20:52)

Now,  contradirectional  in  the  same  line  this  is  the  case  where  we  consider  the

contradirectional  coupling;  incident  way  wave  is  traveling  in  this  optical  beam  is

traveling in this direction, and the minus order is diffracted in this way. And if you take

this k vector which is represented by hey k vector, and this is the k minus which is

modified form of this k vector because of the addition of this vector this k plus. So, this

and this put together this and this put together will be equal to this.



So, you have this vector, you have this vector, and you have this vector. So, this is very,

very nice way of looking at this the components of the z component of the propagation

vectors which will  be put together b beta is  the z component of propagation for the

incident wave, this will be the minus order diffracted wave, which will be modified by

the presence of this k vector due to the acoustic wave.

(Refer Slide Time: 22:03)

And for contradirectional coupling, we will have the similar set of equation in this case

beta by beta mod will be equal to 1, beta minus by beta mod is equal to minus 1, it

indicates the directionality also. Therefore, from this equation we get this, and delta beta

in this case is given this is along the same line as we discussed in the case of plus order

diffraction.
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 And from here if you the multiply the first and second terms respectively by A 0, and A

minus on either side then you can show that from here, we can show and then if you

subtract we can show that A 0 mod square, this is the power contained in the 0th order in

the in the incident beam optical beam and this is the minus order diffracted beam.

So, the difference will be equal to 0. So, that really indicates the conservation of energy

that is flowing along the z direction so, that must be equal to 0. At any point the energy

that is flowing in the positive z direction will be equal to the minus so that it, maintains

the conservation of energy.
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And similarly differentiating this equation with respect to z and using this equation del A

z  the  way  we  have  done  it.  So,  we  get  this  coupled  this  second  order  differential

equation.
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And we can solve this equation in the similar way which will yield that the amplitude of

the 0th order, amplitude of the incident beam incident optical beam in this form P 1 and

Q 1 are constants.



And in the diffracted beam this will  be the a field amplitude.  And this  g which has

appeared here is this detuning factor, sigma square minus delta beta by 2 whole square

under root of that. So, g square equal to square of this; so, this when z equal to 0, then it

becomes the maximum.

(Refer Slide Time: 24:04)

If D be the length of the medium that is the length of the width of the acoustic know the

length of the acoustic wave propagation through which this optical beam, travels that is z

equal to; and we apply the unit amplitude condition here as well, then we can see that

this  power  in  the  initial  incident  beam will  be  represented  by  this  as  a  function  of

function of D and power in the diffracted beam as a function of this should also be is

there.
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So, therefore, these 2 differences of these 2 will be equal to 0. This can be very nicely

represented by this. And from here P 0, we can diffracted delta beta equal to if you put

equal to 0, then you can show that this P 0, the diffracted beam in the 0 means z equal to

0, that is in the reverse direction at the point where the incident beam is the beam is a

optical beam is incident at the acoustic wave. So, that gives you this very well-known

equation tan hyperbolic square kappa in sigma into D.

So, this is the variation of power in the minus order diffracted beam.
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And this is a quite well known, you see you have P 0 of 0, that is that is at D equal to 0,

that is at z equal to 0 is equal to unit power and P 0 p minus order power at z equal to 0 is

somewhere here; which is initially it is 0, but because of the because of the diffraction

coupling we get this has this value. So, it reduces the power in the incident beam that is

reducing, and the power in the diffracted beam is increasing, and this is the consequence

of this equation.

So, therefore, the power variation of P 0and so, at any point at any point you will see that

the total power the difference of this power that maintains the conservation of energy;

which will be coming from this equation. So, A 0 square this will this is now P 0 and this

is your P minus; so, the difference of these as a function of z that will be in constant

which will give you the conservation of energy.

So,  these  equations  are  very  well-known  familiar.  These  are  also  used  in  various

waveguide  coupling  distributed  coupling.  For  example,  so,  let  us  complete  this  for

example, D tends to infinity, then minus order it becomes 1. That is what I want to mean

that if you allow this scrub coupling for a long length, then there will be 100 percent

Bragg reflection.  So, we can treat  this as if the wave was trying to travel across the

acoustic wave, and entire power will be reflected back if you allow the interaction length

to be very large.
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So, D tends to infinity, P minus will become 1, and P 0 will become 0; because entire

power from the incident beam will be transferred to the minus order diffracted beam.

This  corresponds  to  the  maximum  reflectivity.  And  this  property  is  used  in  various

applications in up to electronic devices. So, we conclude that a periodic refractive index

perturbation is a reflector and is a is a reflector; where we do not use any mirror, but it is

the periodic variation of the periodic variation of the refractive indices in the medium.

And such reflectors are very well known as Bragg reflectors, they are found in many

optoelectronic applications; particularly, this distributed feedback lasers which are called

DFB lasers and distributed Bragg reflector lasers DBR lasers.

But more interestingly this power variation in the contradirectional coupling, and this

equation they are even more popular and familiar for this fiber Bragg grating analysis.

And there also it happens in the same way you have a piece of fiber; where you create a

periodic perturbation along the length of the fiber, and if the light which is trying to

travel  within  the  fiber  as  a  guided  mode  will  be  reflected  back  entirely  under  this

condition,  but  that  will  happen  at  the  Bragg  condition  which  will  correspond  to  a

particular width of particular wavelength with a small width with a very high reflectivity.

So, this Bragg fiber is also used as a reflector. So, these are there are various applications

in optoelectronic devices and we will continue.
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So, today we discuss this  coupled wave equation  with large Bragg angle diffraction,

condition for coupling. We also analyze this codirectional and contradirectional coupling,

power transfer, efficiency and application as Bragg reflector.

Thank you very much.


