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So, we looked at this small Bragg angle diffraction in terms of the basic set of equations

representing the power transfer, periodic exchange of power.
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We will continue with that, and we will be discussing this small Bragg angle diffraction

in terms of the power transfer equation for specific cases. Then we will look at the Bragg

condition in this case and the condition for which there will be a complete transfer of

power from the 0th order to the first order or vice versa from first order to the 0th order.

We will  see  that  this  is  a  periodic  exchange  of  power  depending  on  the  length  of

interaction and the factors those are going into the coupling constant.

And we will discuss this coupling coefficient, then the figure of merit for [vocalised-

noise]  very good coupling the high performance coupling,  particularly  which is  very

useful  for  modulation  of  the  incident  beam.  Then  the  diffraction  efficiency  acoustic

power  dependence  switching  in  the  switching  of  a  modulator  and  some  example,

numerical  some  numbers,  to  have  a  feel  of  what  would  be  the  parameters  for  a

modulator. 
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So, we will continue with this basic set of equations for small Bragg angle, let us recall

that there was an incident light which was almost normal to the direction of the acoustic

wave which is propagating along the z direction and the light wave is travelling along the

close to the x axis, along the direction of x axis. And there will be a diffraction which is

which  we will  call  this  plus  order. So,  this  is  your  undiffracted  beam so,  there  is  a

coupling between this undiffracted that is 0th order to the to the plus order diffracted

beam.
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So, we also remember that this beta plus for the plus order diffraction was given by beta

plus equal to beta plus K beta minus. We will see, we will try to look at this vectorially

also we will  try to  understand that  why it  happens because,  you have a  propagation

vector which is directed in this way, but finally, after diffraction this propagation vector

of the light wave is in this direction.

So, there has been a change in the in the propagation vector z component as well which

is the effect of this. So, we will look at the, conservation property then the small k beta

and sorry this z component of the propagation vector for the incident wave that is beta

beta plus and this k vector for the acoustic wave this phonon vector representing the

phonon [vocalised-noise] that will be connected put together to get the equation. This we

will we will try to understand. 

Now, in this equation we left here that A 0 of x amplitude of the undiffracted of the

incident beam which is given by this where delta was equal to a Kappa square plus delta

alpha by 2 square. Under root of that A plus was given by a similar equation C 0 was,

here C plus, D 0 is here D plus and then you have a factor of e to the power of ix delta

alpha. So, C plus this we have seen that can be represented knowing the constant C 0 and

D 0 they are represented by this.
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So, and using that boundary condition for the unit incident field we calculated the power

that is a power in the 0th order beam, 0th order wave and power in the plus order wave.

So, that was cosine square sine square variation

and this reminds we mentioned that it is the power transfer periodic exchange of a power

various power between the two parallel wave guides and that also we understood from

the from the consideration of the couple mode theory. 
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So, this is the power transfer equation and for energy conservation you see this plus this

put together or it should be equal to 1, and that is what is happening here also and that

tells you the conservation of energy. This can you can understand that delta alpha by 2

this quantity will be equal to you see delta alpha by 2, 2 delta so, this quantity will be

equal. So, therefore, this and this put together is again equal to one this quantity is equal

to 1 so, that is why you get this total power equal to 1 and we started off with the unit

power in the incident, incident field. 
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Now, let us consider the two situations that delta alpha equal to 0, we just want to see

that this will correspond to the complete transfer of power, but if this delta alpha is not

equal to 0 that is we take a very convenient value of that to see that this power transfer is

not complete. You can see that this is the factor delta alpha, when alpha plus and alpha

that is [vocalised-noise] the x component of the propagation vector of the incident beam

that is alpha and x component of the propagation vector of the diffracted beam plus order

that is alpha plus.

If these two they differ by a small amount that is they are almost close to each other then

this is this delta alpha will correspond to a value which is equal to 0, in that case delta

and Kappa will be equal. That is in that case the power transfer will be complete, the

power transfer will be complete. So, you can see from here that when delta alpha equal

to 0, if you put it into this equation this becomes 0 and this Kappa and delta they become

equal.  So, Kappa equal to delta,  so this is equal to 1 as a result you get only cosine

square Kappa x because, Kappa and delta has now become equal if delta alpha equal to

0. Therefore, you get this equation P 0 x equal to cosine square Kappa x P plus is equal

to sine square Kappa x.

And this form of the power variation is already known it gives you complete exchange of

power between these two, these two beams are representing the 0th order and the plus

order. But and this is what is called the Bragg condition that is delta alpha equal to 0, we



will see that if delta alpha equal to 0, we will have other consequences also and that is

your Bragg condition.

At Non-Bragg condition, let us suppose that delta alpha is equal to this value we choose

this value just to see that what will be the power variation, how much fraction of power

that will undergo the periodic exchange. So, if we put this delta alpha equal to twice

Kappa, delta alpha equal to this is equal to twice Kappa. So, this is again Kappa square,

this is also Kappa square so, this will be under root Kappa which is equal to delta that is

what we have written under root Kappa is for delta. 

And this is also the same this should be delta equal to under root Kappa into x. So,

therefore, you can see this they look at this two equation this is cosine square, this is half

sine square, and if you if you express this as 1 minus cosine square then this half and half

they will go together and you will get a variation. 
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So, this is this is this is the kind of power variation, we will see we will look at the power

variation curves to understand that how much fraction of power will be can be at the best

couple to the diffracted way from the incident wave. 

So, under this Bragg condition this delta alpha equal to 0, Kappa equal to delta it gives

you this value. 
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Power variation, so again we consider this Bragg condition under this Bragg condition

delta alpha equal to 0, Kappa equal to delta we get this equation, and the power variation

is represented by this between the diffracted and 0th order plus order and 0th order beam.

So, here we start with the when there is no perturbation, when there is an acoustic field

the maximum power will be here that is P 0 x. And then with the perturbation as you

increase the value of Kappa x then it falls and the power in the in the diffracted order it

increases, then it goes to the maximum when it has become minimum. And this is how

when the power in the diffracted order will be maximum there will be no power in the

case of ideal situation, and no power in the 0th order and when there is the maximum

power in the 0th order the diffracted order will have no power. 

And this will happen at these values of Kappa x pi by 2, because you can see if you put

pi by 2, here if you put pi twice pi so, these are the, so this is the purely Bragg condition

and delta alpha equal to 0. And you can see that complete transfer of power 100 percent

to the first order diffraction is possible if the diffraction is under the Bragg condition. 
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This condition to complete this condition is alpha will be approximately will be very

close to alpha plus, but in the for the sake of this calculation this alpha is equal to alpha

plus, if you consider you get this equation. The fractional power that is coupled to the

plus order is given by this, this is the expression that we will be using for the modulator

purpose and that is what we will call the diffraction efficiency. So, P plus will have sine

square of kappa L this is the fractional power which will be coupled to this.

For complete power transfer these are the length of interaction the values of x, that is

values of x because, x is the length across the acoustic wave. So, the interaction length L

that that comes here, so twice pi a pi by twice Kappa is equal to L and this condition this

condition and similarly those points we will get the maximum transfer of power. 
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At Non-Bragg condition when we have substituted delta alpha equal to twice Kappa then

you can see that the power variation will be given by this equation we have seen and now

we look at the various power variation here the maximum power. 
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So, this corresponds to plus order power it cannot go beyond 50 percent, you can see

plus off, so this is half sine square kx which is given by this equation.

So,  the  maximum  value  of  this  can  assume  one  therefore,  this  is  sine  square  so,

maximum value is one. So, you can get maximum 50 percent power here that that is that



complete transfer of power is not possible for this situation whereas, delta lambda is

equal to twice k.
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And in that case the P you have the power variation in the 0th order that can go to this is

the  power  variation  for  delta  lambda  delta  alpha  equal  to  0,  and  this  is  the  power

variation for delta alpha equal to twice k. So, you can see the difference the maximum

power transfer is possible only at the Bragg condition, but at any non-Bragg condition

other than delta alpha equal to 0 the power variation is incomplete. 
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So, this coupling coefficient Kappa we have to look at the basic equation from where we

actually  started,  let  us  see  that  the  basic  equation  where  we  define  this  coupling

coefficient Kappa the value of Kappa. So, the value of Kappa that will be given in terms

of in terms of mu naught omega square delta lambda actually that they need to write

down that basic set of the equations where Kappa is will be given by this equation this

expression mu naught omega square delta e by 4 alpha plus. 

This under Bragg condition alpha is equal to alpha plus and then we can write this is

equal to alpha, coupling coefficient under Bragg condition it will be given by this, but

alpha equal to k cosine beta. We will see that if under Bragg condition this is the incident

wave the angle made by this incident wave is theta B. 

So, this is the Bragg angle at which the power transfer is maximum at which the alpha is

equal to alpha plus then we call that the x component of the propagation vector will be

given by cosine k cosine beta this is equal to alpha. And k 0 n cosine beta because k is

equal to k 0 into n, n of this medium is this and also delta lambda this we have seen is

equal to epsilon 0 n to the power of 4 p and S therefore, Kappa is equal to is given by

this expression. 

And you can see that here this mu naught and epsilon naught these two put together will

give you 1 by c square, there is one omega square. So, that will correspond to k 0 square

and there is another k 0 here.
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So, we will see that utilizing this we can write down this Kappa coupling coefficient

where the exactly  mu naught,  epsilon naught and omega square that is also equal to

correspond to k 0, but this k 0 k 0 cancels you can write omega by c.

So, this is the form of the coupling coefficient which is used where cosine beta cosine

theta B, theta B is the Bragg angle. The x component of if this is the angle of incidence

then the  cosine  theta  of  this  angle  small  Bragg angle  that  gives  you the  that  is  the

propagation x component of the propagation constant and that appears in this. 

So, in terms of the Bragg angle, in terms of the refractive index of the medium and part

of refractive index and effective strain element and the strain optic element in terms of

that one can represent the coupling coefficient for the coupling of wave from the 0th

order to the first order or from the first order to the 0th order and vice versa. 
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The figure of merit which is usually defined in this way that the intensity of the acoustic

wave is given by I a half rho and this is again known where rho is the density of the

medium  and  this  is  the  acoustic  wave  velocity  which  gets  into  this  and  this  is  the

effective strain a square of that so, that is the acoustic intensity.

In  terms  of  the  effective  strain  we  can  revert  back  we  can  write  this  equation  this

expression in this form twice I a rho v a cube, that is again very useful because, we will

have the coupling coefficient in terms of this, you can remember this in terms of this



effective strain so, that is really useful. Now, we define this is a very useful quantity the

figure of merit M 2 that is defined in this way that n to the power of 6, p bar square by

rho v a cube.

So, this now here in this place I will use this expression rho v a cube is equal to twice a

by s square, if I use this here you can see from you can see here that M 2 into I a if I

multiply then you can get this equation. Once again in place of rho v a cube acoustic

velocity cube if I can use this as equal to twice a by s bar square. So, that if I substitute

here if into this equation and this I, I take it to this side then we can get this equation or

otherwise if we just multiply I a into M 2 we can write down this equation. And that is

very useful because this n cube p S p bar and S bar they appear in the n cube p bar S bar

they appear in the coupling coefficient this quantity. 
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So, twice of M 2 I a under root of that will represent the a part of the quantities appearing

in the coupling coefficient so, that is the intention. So, in general we have delta epsilon

equal to this we are trying to express the coupling coefficient with the known quantities

therefore, we can write this in this equation we have seen. These are the quantities which

we have already defined, we have talked about this then assuming the incidence at Bragg

angle we have seen that omega by c n equal to alpha equal to alpha plus we can write this

acoustic power in this form. 



 (Refer Slide Time: 21:02)

Now, from here we can write this equation, you see M 2 into I under root of that M 2 into

I under root of that is equal to you know twice M 2 into I under root of that will be equal

to n cube p and S which will go into this coupling coefficient. Therefore, we can write

this coupling coefficient in this form which will be twice pi under root lambda 0 cosine

beta and this figure of merit multiplied with the acoustic wave. 
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This figure of merit in terms of that we represent this coupling coefficient which is very

useful that is why I am talking about this the these numbers for from the design point of



view will be useful for. So, using this Kappa we can have this diffraction efficiency in

the first order we have defined earlier will be sine square of Kappa into x, L is fixed

width of the acoustic wave and for Kappa we write this expression this quantity. 
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So, that is a very useful relation which will be used for the design of modulators. Now, it

tells us from this expression that this figure of merit to be very high large value of it

requires a small acoustic power and then high refractive index; refractive index should be

fairly large. Low acoustic velocity it appears in the denominator and cube of that, low

density, and high photoelectric this should be photoacoustic coefficient,  photoacoustic

coefficient, photoelastic coefficient this, sorry this is a mistake. 
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So, for unit diffraction efficiency we must have Kappa into L equal to, we have seen that

the diffraction if you go back and just see this power variation offered you for diffraction

efficiency to be one. This happens is the minimum value is pi by 2; it could be this also 2

pi by 2, so, these are the position where the diffraction will be maximum to the plus

order, and there is no intensity available in the 0th order. 

Therefore, using that condition for this diffraction efficiency here, but this quantity we

can we can calculate the we can obtain the condition for unit diffraction efficiency we

have Kappa in to L equal to pi by 2 and therefore, this must be equal to pi by 2 because

this  is  your Kappa we have defined Kappa into L.  So, that  tells  you M 2 into I  by

squaring both sides we get this is equal to this. 

So, for switching a modulator because this is your acoustic [vocalised-noise] this will tell

you like it is an analogous to the situation of the electro optic effect where you where

looking for a half voltage, where the modulator will be switched the phase difference

will be pi. In this case, the power from the incident wave that is the 0th order wave to be

completely transferred to the plus order wave, is defined that is what is the switching of

the modulator and that corresponds to pi by 2 in this case because the variation is a sine

square variation. So, at this define is the condition for the acoustic power requirement.

So, this is  the requirement  for acoustic intensity  and from here we can calculate  the

acoustic power. 



So, there is acoustic intensity comes here because you can bring it back this M 2 figure

of merit here that gives you I a LH equal to this so, lambda 0 square cosine square theta

B, Bragg angle twice M 2. This is the geometry of the accousto optic cell, L is the width

of the acoustic wave and this is the height of this. So, put together the width and the

length that put together that gives you that this acoustic power requirement comes from

here, acoustic power. So, we can use some numbers to see what is the power requirement

for  switching  the  modulator  like  the  case  we  discussed  in  the  case  of  electro  optic

switching where we define this half voltage. 
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So, the diffraction efficiency for this putting this  Kappa into L equal to pi by 2, the

intensity requirement is this, for complete diffraction of the acoustic power, required is

given by this equation. 
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And we can look at the example, one just practical numbers as to have a feel about how

this they for switching of this power from the 0th order to the first order what is the

requirement. Let us suppose that these are all the numbers H equal to 2 millimeter, length

of the that is the width of the acoustic wave, that is length of the accousto optic cell

width of the cell is 50 millimeter. And your frequency of the acoustic wave is some 40

megahertz, and the dense flint glass for which this n that is the refractive index of the

medium natural  normal  refractive  index  is  this.  And  the  strain  optic  tensor  element

effective value is this velocity of the acoustic wave in such a medium which is given by

this and rho is the density of the flint glass medium.

So, with these parameters we can calculate and for a typical value of the figure of merit

of let us say 1.7, this is again a practical number 10 to the power of minus 14, and for a

wavelength of laser helium neon laser light which is 6328 angstrom, the Bragg angle

comes out to be comes out to be approximately 0.12 degree which is very small,  so

almost grazing angle.

So, this is your very small Bragg angle almost close to the close to x axis and using this

value of this Bragg angle pack into this equation where the wavelength of the acoustic

wave with this data one can calculate is equal to 0.78 into 10 power minus 4 meter. That

is the wavelength,  which will  be defining the periodicity of the of the grating in the

formed in the medium because of the acoustic wave. And from this equation we can from



that the equation we have shown here we can calculate this acoustic [vocalised-noise]

intensity and from there we can calculate the acoustic power which using these numbers

will turn out to be point almost half a watt. 

So,  by having these  numbers  we can  see  that  to  switch  a  modulator  accousto  optic

modulator  a  power  requirement  of  the  acoustic  power  requirement  of  half  a  watt  is

required. And by doing this we can we will see later also that how this configuration can

be used for switching for modulating intensity between the 0th order and diffracted order

that is the plus order diffraction of the beam we will continue with this. 
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So, today and for this above acoustic power, this is the this is also a part of the of this

calculation the delta epsilon by epsilon 0 will turn out to be this. And it requires a and

then because to show that  this  perturbation fractional  change in the perturbation is a

really very small 2.4 into 10 power minus 5, this is a big change in the refractive index. 
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So, we discussed this Small Bragg angle diffraction and looked at the power transfer

equations, the condition for complete transfer of power and that is the Bragg condition.

We also discussed this non Bragg condition power transfer, then the coupling coefficient

including that the figure of merit definition of that. And then we looked at the diffraction

efficiency, acoustic power requirement for switching a modulator and we also discussed

with a numerical example.

Thank you very much.


