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Lecture – 05
Maxwell’s equations and electromagnetic waves (Contd.)

Today we will discuss the propagation of electromagnetic waves and energy flow this is

a very interesting topic and will be useful throughout our discussion Energy Flow and

Poynting Theorem.
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So,  we  will  be  discussing  under  the  following  heads  that  energy  transport  in

electromagnetic  waves  in  a  certain  volume  of  the  space  through  which  the

electromagnetic waves are travelling, how the energy is entering and how much of the

energy is leaving out of that space that will clearly quantify will try to understand how

the loss is taking place within that volume.

Then in the process we will work out the Poynting vector and the Poynting theorem look

at each of the terms of the Poynting theorem. Followed by this we will take two example

cases,  the  energy  transport  in  a  dielectric  medium  and  we  will  also  considered  the

transport of energy in a conducting medium. 
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So, Poynting theorem, Poynting theorem basically concerns the conservation of energy

for a given volume in space. As I have mentioned that when the electromagnetic waves

are travelling through certain region of space within the volume the energy, how much

part  of  the energy is  lost  and how much part  of  the energy is  flowing out;  we will

correlate  these two things and this  will  be a will  be described through this Poynting

theorem which is actually a consequence of the Maxwell’s equation and we will start

with the Maxwell’s equation to arrive at the conclusion. 
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So, let  us begin with the Maxwell’s curl  equations,  we have these two famous curls

equations that del cross E equal to minus del B del t and del cross H equal to j plus del D

del t where B is the magnetic field and D is the displacement current j is the induction

current.
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So, starting with these two equations, we will organize the Poynting vector; let us recall

that the vector identity that is, del dot E cross H. This left hand side can be written in the

form that H dot del cross E minus E dot del cross H. 

So, if we plug in the curl equations for this del cross E and for del cross H from here that

is  del  cross  equal  to  we will  substitute  minus  del  B del  t  and for  del  cross  H will

substitute J plus del d del t. If you do that this quantity H dot del cross E becomes H dot

del B del t, because del cross E is now replaced by minus of del B del t and for del cross

H if I substitute this quantity J plus del d del t, then it becomes minus del j dot E minus E

dot del d del t. So, this is the equation which involves the E cross H divergence of that.
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So, let us look at this; del dot E cross H minus B equal to minus j E minus E dot del d del

t minus H dot del t. We have just rearranged this equation in a fashion that, we have

taken this quantity and this quantity together which is a like and this quantity we have

placed separately. The mission the reason is very clear that we want to look at  these

terms these two terms put together and also this term J dot E d v.

Now, let us consider a certain volume of space through which this electromagnetic wave

is travelling and let us considered that the area bound surface area bound by this volume

is S is a close surface. So, we can we can write this equation, if you take if integrate over

this volume, we can write this equation del dot E cross H d V is equal to minus J E d V

minus E dot del D del t plus H dot del B del t.
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Now, look at these two terms we will use Gauss’s theorem to see what is meant by this

quantity del dot E cross E E cross H. So, Gauss’s theorem states that it relates the volume

integral to a surface integral for a vector field H the divergence of this vector field over is

a over a certain volume is equal to the closed surface integral of the vector field.

So, by replacing this F by E cross H that is if we F if we substitute for F this E cross H,

then we can re write this equation del dot E cross H d V equal to the right hand side

which you have seen as it is. Now if I if I apply this Gauss’s theorem, I can write this

equation as surface integral of E cross H that is E cross H dot n unit vector d A integral

of that will be equal to the right hand side.
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Now, we will  define the Poynting vector  the Poynting vector is defined as the cross

product of E field and the magnetic field. So, s is equal to E cross H, you can see from

this definition that S is perpendicular to E also S is perpendicular to H; that means, this

Poynting vector is a vector which is perpendicular to the plane containing the electric

field and the magnetic field; that means, if this Poynting vector has to represent certain

quantity, then the direction of that quantity will be perpendicular to the to the plane that

contains the electric field and magnetic field and we know that electric and magnetic

field they are also perpendicular to each other, as a result this S E and H they form a right

handed tired of vectors.

Now, if we replace this E cross H by this quantity Poynting vector S, then S dot n d A

surface integral of that will be equal to the quantity which we have described before that

is J dot E d V minus E dot del D del t H dot del B del t volume integral of that. So, it tells

you  that  the  Poynting  vector  measures  the  rate  of  energy  transport  and  the  energy

transport it happens in a direction which is perpendicular to both the magnetic field and

electric field and; that means, it is along the direction of propagation direction. So, the

propagation direction is the direction along which the energy transport takes place.
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Now,  let  us  recall  that  using  the  constitutive  relations,  the  energy  density  that  is

associated with the electric field is half E dot D that is equal to half epsilon E square and

the magnetic field energy density associated with the magnetic field is in the same way

half H dot B which is equal to half mu dot H mu into a H square.
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So, if we use definition of the of the electric and magnetic field energy density, then we

can write that E dot del D del t which is equal to half of epsilon is replacing this D that is

D equal to E into epsilon. So, half epsilon into del E square del t which can be rewritten



in this form half del d del del t of E dot D which is equal to del del t of the energy density

w E electrical energy density.

So, we have used this electrical energy density here in place of this you can take half

inside. So, it gives you this quantity and in the same way if we proceed, then for H dot

del B del t, we can write half mu into del t del del t of H square which is equal to half of

del del t of H dot B and in turn this gives you del del t of w B which is the energy density

associated with the magnetic field. Therefore, these two terms which are appearing in the

equation can be replaced by the sum of these two terms; that means, we can represent

this sum of these two terms is equal to del del t of the sum of the energy density is

associated with the electric and magnetic fields.
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So, if we rewrite this equation that S dot n this left hand side the Poynting vector surface

integral of that will be equal to J dot E d V and this quantity. Just now we have seen that

del del t of del B w B and w E d V is the translated form of the individual variation of the

electric and magnetic fields. So, we can write this equation if you take del del t outside

the  integral,  then  we  can  write  that  it  represents  the  total  energy,  energy  density

associated with the magnetic field and electric field over this volume and del del t of that

that is the rate of change.
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So, let us let us look at this term that that the energy density some of the energy density

is for the magnetic field and for the electric field is equal to this just now we have seen.

But because this is the total energy density with the electric field and magnetic field, so

this quantity actually represents the total electromagnetic energy stored in the volume V.

So, total we have to magnetic energy in a volume V and if you take del del t of that that

will represent the change in the total electromagnetic energy that is stored within that

volume.  If  we place  a  minus  sign before that  it  should definitely  represent  that  this

amount of energy will be the loss.
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And if you look at this term that is S dot n d A which is equal to this, this actually

represents the instantaneous power flow of instant  instantaneous power instantaneous

power out of the volume V through the surface S.
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Now, again rewriting this equation in this form, this left hand side that is the term which

contains the Poynting vector represents the total  power flowing out of the volume V

which is equal to the power in the volume dissipated power in the volume and also the

total electromagnetic energy change in the volume. This is just now I have mentioned



that this quantity del del this quantity w B plus w E that is the energy densities of the

electric field and the magnetic field integrated over the volume d V represents the total

volume within that space, total energy stored within that space and if you take the time

derivative of that it represents the change in that energy and since there is a minus sign,

so it represents that the loss of the energy from that space.

So, if you look at this equation, the energy flow through that volume will be equal to the

loss of the energy from that volume and the dissipated power within that volume. So, that

is very consistent and it really represents the conservation of energy; del dot S because

this quantity we have called that power dissipation because del dot S del dot S and this

del B del t the continuity equation is equal to minus J dot E.
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So, we will consider two different cases one is the dielectric and through which a plane

wave propagating and how this Poyting vector measures the flow of energy and followed

by that we will consider another situation when the electromagnetic wave is propagating

in a conducting medium. So, in this case we can represent the electric field E as x cap E

naught cosine omega t minus k z as if the wave is propagating along the z direction, then

the magnetic field can be written as this because electric field is x polarized and the

magnetic field is y polarized.

So, the energy density associated with the electric field can be calculated as the integral

of this, then half of E 0 square cosine square omega t k z. So, this quantity if I take the



time average time average of this, that is integral over a complete cycle; then we can

write that the value of this will be because for 0 to twice pi by omega time that is t will

give you the value half and you already have half. So, omega E the time average of the

electrical energy density associated with electric field will be equal to one upon four E

epsilon E naught square where E naught is the amplitude of the electric field.
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In the same way if  I  consider the magnetic  field;  energy density  associated with the

magnetic field, then we can calculate to be equal to 1 upon 4 mu H 0 square where H 0 is

the amplitude of the magnetic field. This we could arrive at using this relation H 0 equal

to omega by mu into k into E 0. So, if you substitute this, we can see that the electrical

energy density, the energy density associated with the electric field and that associated

with the magnetic field the average value of that over a complete cycle will be the same

that is 1 upon of 4 mu epsilon naught square.
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So, I mean known this fact, then we can write the total energy density average value of

that which represents energy. So, will be equal to twice the contribution is both from the

electric field and the magnetic field which will be equal to half E E 0 epsilon naught E 0

square which is  again consistent  with the with the our previous information  that  the

Poynting vector S, there should be a mod S is equal to mod of E cross H which is equal

to E 0 H 0 cosine square omega t minus z, since if you take mod then this z cap is not

required. So, in that case the average value of the Poynting vector S will be equal to half

of k by omega mu and E 0 square z that will give you this value. So, we could so that the

flow of energy which is given by the Poynting vector is equal to this. So, these two are

the same equation.
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Now, since the wave velocity of an electromagnetic wave can be given by v equal to

omega by k and k can be replaced by mu epsilon naught to the power of half. So, we can

write that the average value of the Poynting vector is equal to the average energy density

into the velocity  that  means,  the  average  energy that  is  associated  with the both the

electric and magnetic field and over a distance which is given by the velocity will be

equal. So, a S dot n d a that is the energy flow through the area perpendicular to the area

d a is represented by this which will account for the net energy flowing out of the closed

surface a.
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Now, we will consider another interesting case where we will see the Poynting vector

through a cylindrical conductor that carries a steady current, I. Now the electric field

inside this conductor is given by this E equal to z cap I by sigma into A, this is because

this Ohms law if you write J into sigma is equal to E. So, sigma into E is equal to z into

J.

So,  in  place  of  J  we have written  I  by A where A is  a  surface  area and sigma is  a

conductivity  of  the  conductor  and  the  magnetic  field  outside  this  conductor  can  be

represented  by  H  equal  to  phi  I  by  twice  pi  rho.  So,  z  and  phi  they  are  mutually

orthogonal z is along the axis of the conductor phi is in the as azimuth. So, if you take E

cross H that should represent a direction, which will be perpendicular to z and phi and in

the outward direction. So, this will be evidently along the rho direction that is the radius

vector  direction  of  the  cylindrical  coordinate  system  representing  the  cylindrical

conductor.
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So, let us see that for the cylindrical conductor that carries a current I, we can write the

Poynting vector in this way E cross H dot n d a where we consider a certain length L of

the cylinder.
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So, E cross H if we put together, this E cross H and take the cross product of these two

quantities, then we can represent that E cross H equal to minus rho cap unit vector of rho

that is the radius vector direction by into I square by twice pi rho sigma into A.
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So, this is the value of the Poynting vector and from the curved surface; if you consider

the Poynting vector, then we can see that we have to take the integration for phi which is

about  the complete  azimuth that  is  from 0 to 2 pi  and for a  certain  length L of the

conductor which will be from z equal to 0 to L then, we also write the area elementary



area in cylindrical coordinate systems that is equal to rho d phi d z and that should be

equal to this quantity is the constant; we have to take the integration of phi equal to 0 to 2

pi and L and for z it will be z equal to 0 to L. So, this is a mistake.

So, by doing that E cross H dot n d a a equal to minus I square L by A sigma; that L by A

sigma is equal to the resistance,  for resistance we write  rho L by A and in terms of

conductivity, we write  the resistance  L by A sigma.  So,  this  quantity  represents that

minus I square R. So, this is a known quantity which appears in the textbook that this is

the joules loss heating loss.
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So, in the case of a cylindrical conductor which carries a current I, we can see that the

Poynting vector if you calculate the Poynting vector, but the curved surface; then it really

gives you I square R with the negative sign, it tells you that this amount of energy is

dissipated out and away from the conductor. And J dot E d v will be equal to sigma E

square d V. So, this quantity is the loss this quantity is the loss. So, that is equal to sigma

integration of E square d V; if I substitute for E square, then we again end up with the

same value that is I square of R; that means, the energy which is flowing out is equal to

the dissipation of through at the conductor which is carrying a current I.
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So, by this discussion we have considered the energy transport in electromagnetic waves

which  is  primarily  represented  by  the  Poynting  vector  and  through  the  Poynting’s

theorem, that the total amount of electromagnetic energy that is flowing inside a certain

volume of space through which the electromagnetic wave is propagating will be equal to

the amount of energy that is leaving that space plus the amount of energy which is lost

within that volume. So, energy transport in the case of a dielectric medium as well as in

the case of a conducting medium we have also calculated.


