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So, we have seen that Electro optic Effect in the 2 groups, that is the linear electro optic

effect and the Kerr effect that is the quadratic electro optic effect.

(Refer Slide Time: 00:23)

 Kerr And the subsequent discussion is under this following topics that is impermeability

change under electric field. And we will see the steps how to find anisotropy under the

electric field and look for the principal refractive index system. Then various crystals

various electro optic tensors associated with this to make a general overview and to have

an idea about how this electro optic systems are used for various applications, typical

isotropic  anisotropic  crystal,  and  then  second  order  electro  optic  effect  that  is  the

quadratic electro optic effect.
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So, let us look at  this we have seen that impermeability tensor, that is eta is 1 by n

square. So, change in the electric field, change in presence of electric field delta eta is

represented by this, and we have seen that r the Pockels coefficient given by this quantity

and the Kerr coefficients tensor quadratic electro optic tensor is given by this. So, delta

eta is represented by this equation.

(Refer Slide Time: 01:47)

And  this  also  we  have  seen  that  this  impermeability,  new  impermeability  tensor  in

presence of electric field is connected to the impermeability in absence of the electric



field, plus the electric field and Pockel coefficients product term, the quadratic electro

optic tensor and the electric field product term.

So, this we have seen that this Pockels coefficients are 18 in number; whereas, there are

36 coefficients for the Kerr coefficients. And this is the short form of compact form of

writing the Pockel and Kerr coefficients.

(Refer Slide Time: 02:40)

Now let us take an example for example, if we do not have any external field that is E

equal to 0, we write this index ellipsoid equation in this form. And using the matrix

notation we can write this equation like this x, y, z and then this ellipsoid matrix then we

have column vector x, y, z equal to 1. And in terms of eta ij tensor, we can write this

equation in this form.



(Refer Slide Time: 03:21)

For E not equal to 0, that is this was in presence of in absence of any external field, but

now that in presence of the external field it is not eta ij of 0, but it is eta ij of E and this

represents the compact equation.

So,  but  this  eta  ij  is  nothing but  the sum of eta  ij  plus  this  quantity  that  is  Pockels

coefficient tensor and the electric field; if we restrict our study only to the Pockels effect.

So, eta ij in the short form in compact notation eta i is now eta i 0 r i E k, where k can

assume 1, 2, 3 that is E x, E y and E z these 3 field values. So, let us try to understand

that how electric field modifies the tensor and the components.
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So, the total change now if you consider both the quadratic effect and the linear effect,

then  the  impermeability  in  presence  of  the  electric  field  will  be  the  sum  of  the

impermeability tensor. In the absence of the electric field, plus these 2 additional terms

electric field dependent additional terms for only for Pockel this equation that is we just

restrict only to this part. And then in that case eta i using that synced indices eta i of E

equal to eta i 0 plus r i k E k.

When if you look at the matrix equation explicitly, then this will be a 6 by 1 matrix

which is this quantity will be represented by this because we have put ij equal to i only.

So, this is 6 into 1, this is again 6 by 1 matrix, but this one will be 6 by 3 k equal to 1, 2,

3 and this is 3 by 1. So, this is because this one is E x, E y and E z. So, this is the explicit

representation of this impermeability equation in presence of the electric field connected

to the equation, connected to the impermeability in absence of the electric field.
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 Now example of Pockels coefficient delta eta equal to this we have seen. And this one

also we have seen we have identified that this  represents this  18 coefficients for the

Pockels coefficients. And this r ij is called the electro optic tensor the linear electro optic

tensor.

(Refer Slide Time: 06:30)

So, the matrix equation total change in this case is again the same equation, but for Kerr I

now consider only the third term, not the second term. So, eta ij equal to eta ij 0 plus this

quadratic electro optic coefficient tensor E k and E l so, in the compact notation eta i E



eta j. So, this is a very good way of looking at the explicit form of the matrix equation.

You have 6 into 1, here to represent this 6 into 1 in absence of the electric field. This is

the total impermeability in presence of the electric field, which will come from the from

this 6 by 6; that is, a s ik tensor, and this electric field components E 1 square E 2 square

E 3 square and 0, 0, 0 for this matrix equation ok.

(Refer Slide Time: 07:35)

So, let  us look at  it  explicitly, you have this  equation  for the quadratic  electro optic

tensor. The change in the impermeability, and this column, this is the tensor that is s ik

now 36 components, 36 coefficients and this right hand side E 1 square E 2 square and E

3 square. So, this is again the an example of writing this matrix equation for the Kerr

coefficients. These are useful in evaluating and estimating the changes in the refractive

indices or impermeability in presence of the electric field by knowing the values of the

electro optic tensors, the numerical values.
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So, determine to determine the electric field induced anisotropy, this is the way we will

do it if E equal to 0, we have seen that this equation will represent the index ellipsoid in

terms of the matrix equation. And x transpose this is your x and this is x transpose this is

x.

So, you can write  this  equation  as this,  and this  will  definitely  represent  that  E is  a

diagonal matrix. Truly, if eta equal to in absence of field principal axis system, only you

have 1 by n x square, 1 by n n y square 1 by n z square these are the 3 diagonal elements.

So, you have E is a diagonal. In presence of electric field that is when E is not equal to 0,

you have all the changes at there associated with all 6 components. 

And then we can write this equation in this form. But this time this E matrix, E matrix to

represent this equation this eta ij is not different, because it is eta ij of e. So, we write E

dash x transpose E dash x equal to 1. E dash is not diagonal in this case; because we have

all these all the 6 elements present here, all the 9 elements rather actually 6 because the

symmetric terms are identical.
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So, it is a way to find out the principal axis system just by diagonalzing this equation. We

have seen one example earlier; that when E equal to 0, we have this equation; when E is

not equal to 0 we have this equation. But this E prime is not diagonal so, we set x equal

to B into u, then x transpose will be B into u transpose. So, that is equal to u transpose B

transpose. 

And if you plug in this u transpose and B transpose or x transpose in this equation, then

we can write this equation in this form. Which will eventually give you u transpose E

into u, and then this quantity will represent E as the diagonalised; is a way to diagonalize

this  elementary  diagonalization  of  matrices. And  once  I  have  this  diagonal

diagonalization diagonalised matrix that is only the diagonal elements, those elements

will represent the new principal axis systems refractive indices.

So,  this  is  one way of finding the principal  axis  system of the distorted  ellipsoid  in

presence of the electric field.
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So, what we have represented here with indices? Now we just quickly discuss in terms of

the  steps.  So,  the  first  step  is  to  diagonalize  this  E  by  doing  this.  And  from the  3

solutions, once you have diagonalized E, you get 3 solutions lambda 1, lambda 2, lambda

3. Then we can calculate the eigenvectors knowing this from the polynomial equation of

the matrix. We can calculate the eigenvectors that is e 1, e 2, e 3 f 1, f 2, f 3, g 1, g 2 for

the 3 values of lambda 1 and lambda 2. Each value of lambda 1, lambda 2, lambda 3 will

correspond to the respective eigenvectors.

Then we can construct this B here for lambda 1 like this. And then B transpose will be

simply the transpose of this e 1, e 2, e 3 will go in the row from the column and so on ;

which will give you this E equal to so that corresponds to this lambda 1. And similarly,

for lambda 2 again we can construct this equation f 1, f 2, f 3 which is the corresponding

eigenvector,  and maintaining  the  same sequence  we can  again  calculate  B transpose

which  will  correspond to lambda 2 and in  the  same way for  lambda  3.  So,  we can

calculate all the 3 eigenvectors corresponding to the 3 eigenvalues which will represent

these Eigen values will represent the corresponding refractive indices in the principal

axis system, under the influence of the external electric field.
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So, again to summarize the steps to determine the field induced birefringence; that is

how the changes in the refractive indices can be quantified can be calculated. So, let us

first find the principal axis and the principal refractive indices system; when E equal to 0

that is by writing the diagonal matrix. Corresponding to the index ellipsoid, then find the

coefficients r ij k by using the appropriate matrix for r i k. Determine the elements of the

tensor using this equation, this equation we have seen explicitly in terms of the matrix

form. This is by 6 by 6 and this is 6 by 3.

So, this  is  a diagonal matrix  elements  with this  one.  This is already diagonal matrix

element,  but when you add these 2 unit no more remains diagonal then you have to

diagnolise. This write the equation for the modified index ellipsoid by using this. So, first

we will look at there electric field components who all are present. Then will take care of

this quantity that r ij k and this. So, this will give you the matrix these 2 matrix will be

added  up,  which  will  represent  the  new  matrix.  New  matrix  to  represent  this

impermeability in presence of the electric field and then we can write the index ellipsoid

in this form.

Now, once we have the new matrix in terms of a in presence of the external electric field,

then we can actually a diagonalise this matrix to find lambda 1, lambda 2, lambda 3 as

we have discussed.
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So, this is one way of doing the principle. So, this lambda 1, lambda 2, lambda 3 the 3

Eigen values will directly represent the corresponding refractive indices in the principal

axis system after the ellipsoid is distorted undergone some rotation. The other way is by

using an appropriate Euler angle rotation of the coordinate system; which will coincide

with the principal axis system of the medium. And this example we have seen and it is

also very useful by looking at the cross terms and the direct terms in the index ellipsoid.

Then by doing this any of these 2 operations we can determine n 1, n 2 and n 3 the new

principal refractive indices in presence of the electric field. And these 3 will be will be if

they are different then we can actually calculate the birefringence for the way which are

having these 2 refractive indices as the 2 polarization components; that is, if a wave is

travelling along the traveling through the medium. 

So, that it is electric field vector corresponds to this direction principal axis direction,

and the another linearly polarized wave which corresponds to the direction represented

by the direction of this which will come from the eigenvectors of this of this principal

refractive indices, then there will be a if in general n 1 and n 2 are different. There will

be a birefringence between these 2. And similarly if the orientation is of the polarizations

of the wave is along these 2, then there will be a birefringence between these 2. It could

be as well from this and this ok.



(Refer Slide Time: 17:19)

Now, we will look at few crystalline structures cubic monoclinic, there is a you know

very detailed study of the crystalline structure as regards the electro optic effects and

there are groups. So, this is monoclinic, tetragonal, trigonal, hexagonal, orthorhombic.

And looking at the symmetry 2-fold 3-fold 4-fold there are groups of the crystals.

(Refer Slide Time: 17:45)

The centrosymmetric cubic crystal we have seen that this the tensor is 0, Pockel tensor is

0, Pockel coefficient tensor and for non-centrosymmetric. But isotropic like example is

gallium arsenide, these 3 coefficients will be non 0, rest all of them as 0. For tetragonal



like KDP potassium dihydrogen phosphate, this 3 are the non-0 coefficients we have a

for hexagonal, we have distance r.
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So, these are the tensors representing different crystalline structures corresponding to

different media. And knowing the values of this r 4 1, 5 2, 6 3 etcetera we can calculate

the change in the impermeability. By knowing the strength of the electric field, then we

can calculate the birefringence the retardation and all other relevant properties. We will

see various examples.
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. So, here is a list of some very useful very commonly used crystals, isotropics, we have

mentioned only 2 isotropic gallium arsenide, zinc sulphide. They have n 0, this quantity

which  is  and  because  it  is  isotropic.  So,  there  is  no  question  of  n  e  extraordinary

refractive indices. And these are the operating wavelength at which this so, this refractive

indices.  And these are the coefficients for gallium arsenide you have only one non-0

coefficient r 4 1, which is equal to this and into 10 power of minus 12 pico meter per

volt.

So, this these are the coefficients for various crystals KDP, ADP, quartz, KDDP, (Refer

Time: 19:52) deuterium phosphate; this lithium niobate, lithium tantalate so, this is table

is very useful. And these are the experimentally obtained values. And just using these

values and knowing the electric field one can completely specify the refractive index and

hence the polarization  properties  of the electromagnetic  waves travelling  through the

particular medium. And this table is taken from optical electronics by mister Ghatak and

also Thyagarajan this book optical electronics.
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Electro  optic  tensor  for  isotropic  crystal,  gallium  arsenide,  zinc  sulphide,  indium

arsenide, cadmium telluride.

So, for all of them the firm is the same. That is all the 3 coefficients non 0 coefficients

are the same that is r 4 1. Actually this is 5 2 and this is 6 3. But because the numbers are

the same so, we write r 4 1. So, this is for this for zinc sulphide the values are different.
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For KDP this r 4 1 and r 5 2, they are same, but this is different r 6 3. For lithium niobate

and this is the group of medium group of crystals which exhibit exhibits this particular

which is represented by this tensor. And this lithium niobate, which is a very strongly

piezoelectric material, it shows this electro optic tensor like this.
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Ok Second order electro optic tensor of isotropic crystal that is quadratic electro optic

tensor. It has this from, we can see this is this has 6 by 6 element matrix.



So, and the designations of this are s 1 1, s 1 1, s 1 1, s 4 4 so, all these 3 are the same. In

the case of isotropic medium s 4 4 equal to half  of s 1 1 minus s 1 4 these are all

experimentally observed coefficients. And this tensor is then very useful will take up one

very interesting example for this Pockel effect, at the end after we discuss for the Kerr

effect.  For  the  quadratic  electro  optic  effect  after  we discuss  the this  thing.  So,  this

silicon is a centrosymmetric cubic crystal, second order electro optic is observed linear

electro  optic  effect  does  not  arise  as  we have  seen  because  it  is  a  centrosymmetric

crystal.
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. So, in this discussion today, we have summarized this impermeability change under

electric field, and then we looked at in details the steps how to find the anisotropy under

electric  field.  Anisotropy in  terms  of  the  change in  the  permeability, impermeability

tensor; that is, the coefficients attached to the impermeability tensor.

And from there we can calculate the values of the electric field dependent refractive

indices in the principal axis system of the of the crystal. And from there we will see in

the subsequent examples how we can calculate the birefringence retardation the delay of

the  orthogonal  polarizations;  which  is  very  useful  for  designing  different  kind  of

modulators and devices in the devices for communication systems for switching and for

various  other  applications.  So,  this  anisotropic  crystal  second  order  electro  optic

coefficients, all these things we have discussed by now.



Thank you.


