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So we have seen the basics governing equation for the couple mode equations, which are

used for the coupling analysis of optical waveguide. And now that with that background

we will continue our discussion for a very useful device that is what is called the planar

directional coupler. 

We will use this planar directional coupler analysis, but this can be extended to with the

background with the knowledge of this analysis, we can understand the principle of other

forms of the waveguides. So, that is why it is very important. And also this directional

coupler is a very useful component a host of many devices in optical communication in

sensor in integrated optics.

(Refer Slide Time: 01:00)

So, this is one very important device used in integrated optic, fiber optic a very useful

component we will look at how this directional coupler are have include almost every

part  of  the  communication  system and also  a  very  useful  device  for  sensor. Optical

sensors, then optical many of the devices are like know very important in the in terms of

this optical amplitude modulator, power tapping then power divider spliter, combiner,



wavelength filter wavelength multiplexer, optical switch optical cross connect. And there

are many more in fact, it is a large number of components are made out of this basic

principle  of directional  coupler. And if you look at the structure of the waveguide is

basically consists of 2 2 channel optical waveguides placed close to each other.

Ah So that there field of the individual wave can in the mode the field of the modes are

individual wave guide can interact with that of the mode of the neighboring waveguide.

(Refer Slide Time: 02:18)

So, let us look at this configuration, you have an optical waveguide which is wave guide

1, and see that the waveguide can support assembly mode that is the fundamental mode

replace  like  this.  And you have  another  waveguide,  which  is  for  the  time  being we

assume that this  is identical  or maybe similar. It  also supports a similar fundamental

mode field distribution. And now these 2 waveguides are line parallel to each other with

a small gap between them. And the wave is travelling along the z direction.



(Refer Slide Time: 03:01)

In that case, if we assume that we have exited one of the waveguide, let us suppose these

waveguide will learnt field optical wave into this waveguide, then the modal field of the

optical waveguide 1 will be intercepted by the waveguide 2.

(Refer Slide Time: 03:20)

Let us look at this will be intercepted by the waveguide. You can see that this modal field

is  now a being intercepted  by this  waveguide 2 show. It  hits  the  second waveguide

therefore, this field because any field in such a waveguide structure will be continue as



the  tangential  component  of  the  field  should  be  continuous  across  the  waveguide

interface.

So,  this  must  be  continuous  and the  continuity  of  the  fields  at  the  boundary  of  the

waveguide  2  some  fields  get  excited  inside  the  second  waveguide.  And  these  2

waveguides  the  total  system is  a  bound structure.  In  a  bound structure  in  the  fields

wherever it is it cannot be any arbitrary field. 

It cannot be any arbitrary field the field induced in the waveguide 2 must be a modal

field of the system. And that is the main point that the field which is induced into the

second waveguide because of the intersection of it is evanescent tail  with the second

waveguide must be a modal  field the system. The modal  field follows a distribution

which is similar to that of the waveguide 1. And the induced field of the waveguide 2

interact that with the waveguide 1.

So, it so happened that if this field can interact with this waveguide, the field which will

be induced here that can also intern interact with this waveguide the first waveguide. And

this process goes on as long as these 2 waveguides are interacting and line parallel to

each other. So, on the whole if you look at the total structure as a whole, it happens that

the fields of the 2 waveguide is start interacting with each other. 

Waveguide 2 will tap optical energy from waveguide 1. Because the waves are travelling

along the z, z direction for the traveling of the wave along the z direction it needs power.

And therefore, it will tap the power tap occurs from waveguide 2 to waveguide 1. Know

it occurs from waveguide 1 to waveguide 2, an intern as the interaction goes on, then the

similar process will occur between the waveguide 2 and waveguide 1.

So, there is an exchange of power between the 2 waveguide due to overlapping of the

field outside the guiding region. That is outside the core of the 2 waveguide. So, this is

called evanescent tail, then because evanescent conjugate the entire process is due to the

interaction of the wave through their evanescent tail.
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Now, this quantitative this qualitative discussion understanding helps us in investigate

how the power exchange between the 2 waveguide step. Plus, and we will look at the

exact formulation and setup couple mode equations to draw this conclusion. So now, we

begin this analysis of directional coupler.

(Refer Slide Time: 06:37)

So, for individual waveguide the fields varies the fields the fields vary as z as a equal to a

0 e to the power of minus i beta 1, this is for the first waveguide and for the second

waveguide b equal to b 0 e to the power of minus i beta 2. So, these are the 2 individual



independent waveguide mode we are talking about. The amplitude of the mode z other

mode at z is d a d z. So, as long as this is an individual independent waveguide the

amplitude variation of the mode will  be like this. And for the second waveguide the

amplitude variation will be like this.

This thing is true as long as these 2 waveguides are isolated optically isolate and they are

not interacting as if they are well separated, the fields of waveguide do not overlap and

their optically isolated.

(Refer Slide Time: 07:38)

Now  that  so  this  is  the  situation  that  we  are  discussing  when  we  are  pleased  to

waveguides are quite apart, but when they are close to each other, the fields will interact

with  each  other.  And  this  is  the  structure  the  schematic  of  this  directional  coupler

structure. You have an input port, here you have another input port, here you can use any

of these 2 as an input or you can use both of them. Then this 2 waveguides who are very

close to each other at this region will interact, and there will be a redistribution of power

at this point which will give rise to the wave along this waveguide, which will call the

transmitted or the throughput waveguide and this one which will be called the couple

waveguide.

This  will  be  called  couple  waveguide  if  this  is  the  input  waveguide  then  this  is  a

transmitted of throughput and this is a couple, but if this is the input waveguide when



this  will  be called  the coupled waveguide,  and this  will  be called  the throughput  or

transmitted port.

So, this is by convention because it is a directional coupler. So, and bidirectional so both

of these, any one of these or both of these can be used as the input and this side can also

be used as input so they are also sometimes called bidirectional coupler.

(Refer Slide Time: 09:10)

When the waveguide have in the vicinity, that is when we will look at the wave guide,

when they are closely space that is there optical interacting the most overlap through the

evanescent tails we have seen that. So, the waveguides are then interacting optically and

the result is that instead of d a del a del z is equal to minus i beta 1 a. You have one more

time sitting here because this is the interaction term. This is the other the radiation in the

wave of variation in the amplitude of a is a function of the amplitude of the wave in the

waveguide 2. So, this is the coupling term, similarly for the waveguide 2 you have the

coupling term, which is due to the waveguide 1. So, these are the couple mode equation

which we have derived and we have seen how they have come from.

Now, this k 1 2 and k 2 1 they will represent the strength of interaction. If it is large then

more  will  be  the  interaction  if  it  is  small,  then  more  will  be  the  less  will  be  the

interaction. So, they are call the coupling constant k 1 2 and k 2 1.



(Refer Slide Time: 10:28)

The coupling constant you can see that in absence of any coupling if there well separated

these 2 quantities will become 0, k 1 2 and k 2 1 they will become 0 because there is no

interaction,  but  in  presence  of  interaction.  The  amplitude  of  mode  in  a  waveguide

depends on few other parameters involved in this configuration. Whatever depends on

that of the other, the amplitude of the field in one waveguide depends on itself as well as

the field on the other waveguide.

The  make  out from  here  the  amplitude  read  dependent  amplitude  depends  on  the

amplitude of this waveguide and also that of the other waveguide through the coupling

constant. The coupling coefficient this k 1 2 or k 2 1 is a very complicated function of 2

parameters we are depend on the width of the waveguide. The refractive index profile of

the 2 waveguide involved their separation which is very important. If it is well separated,

then there is no interaction coupling coefficient drastically reduces become 0.

And the kind of mode we are interacting it also depends on the kind of mode; whether

their fundamental mode, whether their first order mode they are interacting. So, that is

that is going to decide the coupling coefficient as well. And very importantly it is also a

parameter  that  depends  on  the  wavelength  of  operation.  And  this  principle  that  a

coupling coefficient depends on the wavelength of operation is utilized in wave many

interesting devices like wavelength division multiplexer, wavelength division couplers

and so on and so forth.



For  a  pair  of  identical  waveguide  let  us  suppose  the  constituting  the,  thesetwo

waveguides their identical; in that case k 1 2 and k 2 1 will be identical. And therefore,

this k 1 2 equal to k 2 1 we can write equal to kappa. 

(Refer Slide Time: 12:43)

So, one coupling coefficient that will represent the entire system now, we make a general

understanding  and  postulate  that  if  we  think  of  the  total  structured  the  composite

waveguide,  then  there  will  be  a  wave  which  is  travelling  through  this  waveguide

structure with a phase constant beta. And this wave of this composite structure the total

structure has to come from the waves of the individual waveguide that is the modes of

the individual waveguide. 

And  therefore,  this  composite  waveguide  must  be  there  must  be  drawn  out  of  the

combination of the modes of the individual waveguide. The waves in the waveguide 1

and 2 are then should be should be expressed in terms of the wave of the composite

structure I called this wave of the composite structure as having a phase constant beta.

So, just the z dependent amplitude of the first waveguide should be represented by this

and where the amplitude is a 0, and for the second waveguide the z dependent amplitude

will have a similar distribution, that is b 0 e to the power of. So, this b beta is now the

wave which is travelling along the total structure with a phase constant beta so this is the

same beta.
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So, if I now substitute this assumption that there is a wave of that total system, and we

substitute this wave back into the wave equation the couple mode equation then we can

write this couple mode equation in this form. So, we get from the couple mode equation i

beta (Refer Time: 14:40) del a del z will be give i beta and this was already i beta 1.

So, I can rewrite in this from, the equations simplify to the following matrix because you

can put it in the form of a matrix which will give you the coefficient matrix for a 0 and b

0, that is in terms of b beta b one k 2 1 and k 1 2 in this form. Now for further solution

for a 0 and b 0, this non trivial solution this determinant of this matrix will be put equal

to 0.
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Which will  give you an equation  quadratic  equation of  beta  square because you are

looking for a beta,  we have assume that there is a beta there is a total  wave for the

composite  system,  which  is  propagating  with  a  phase  constant  with  a  propagation

constant  beta.  And  we  are  looking  for  this  beta  in  terms  of  the  amplitudes  and

propagation constant of the individual waveguide.

So, look at this beta square beta has come up in the form of a quadratic equation. Beta

square equal to beta into beta 1 plus beta 2 this and this gives you this solution for beta s

a because it gives you 2 solutions for beta 1 is beta s and beta a this suffix beta s and beta

a are very usual to represent that; s means symmetric a means antisymmetric. So, you

have 2 values of beta half of beta 1 plus beta 2 and 1 4th of the difference that is delta

beta square plus k square, where is kappa square is under root of this k kappa 1 2 into

kappa 2 1.

So, this composite waveguide has a set of 2 independent mode, because we started with

the assumption that; the z dependent amplitude for the first waveguide and for the second

waveguide are drawn out of one wave which has a propagation constant beta, but it turns

out that the total system has 2 mode; that is one symmetric and one antisymmetric, these

2 modes will have 2 propagation 2 different propagation constant, as a has a solution of

this quadratic equation, which are beta s and beta a and are given by this equation.
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.

So, one of these 2 waves of the total system the composite system is propagating with a

propagation constant beta s, and the other one is with the propagation constant beta a.

So,  this  beta  s  is  to  represent  that  symmetric  mode  and  this  one  2  represent  the

antisymmetric mode therefore, we have a general solution to equation one that is, the

assumption that  is  a  z  and b z  how it  depends on the amplitude  of a  and b,  b  is  a

interaction a by itself. So, a z and b z we can write in this form, having known the values

beta s beta 1 k 1 and k 2 so you can represent in this equation. This s and a as I have

mentioned earlier are to represent symmetric and antisymmetric mode of the total system

of the composite waveguide.
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So, this beta s that is symmetric wave will have filled profile like this. You know this is

the even mode and this will be antisymmetric which we call the odd mode.

So, these are the total system you have 2 waveguide and the modes of the total system

the 2 waves to other mode of the total system can be thought of there is one symmetric

mode and there is one antisymmetric mode. So, these are the 2 mode which belong to the

total system that is that.

(Refer Slide Time: 19:04)



And we can assume that we can put the boundary condition, that have z equal to 0, if we

at z equal to 0. If we launch unit power into one of the waveguide, I just launch unit

power into one of the wave guide then these 2 amplitudes will be added up because the

phase difference is 0 at z equal to 0, both of them will have z equal to 0 phase difference

between them is 0. So, they will be added up and these 2 we will be cancelling each

other.

So, it is like as good as telling that there is a wave which is confined only into one

waveguide. So, the superposition of these 2 waveguide at z equal to 0 will be equivalent

to the wave at the first waveguide that is an input in the first waveguide. The input unit

power is launched into waveguide 1 and no power launching to waveguide 2 under that

condition then we can write a s plus a, a equal to 1 at z equal to 0, because you have e to

the power of i beta s z e to the power of minus i beta a z both z 5 0. So, you get this one

for this is a total unit amplitude at z equal to 0.

And for the second waveguide this will be put equal to 0 because this is the amplitude in

the second waveguide, this is in the first waveguide. 

(Refer Slide Time: 20:34)

So this fields that a s is equal to this, because if you if you solve these 2 if you eliminate

the value can calculate the value of a s and a a by solving these 2 equation. You can see

that a s equal to this and this should be a a, where is a mistake it should be a a will be

equal to this. Therefore, knowing this fact that we can now put them back into a z and b z



equation, which we have assumed then you can write this amplitude that is the power

which is the square of the amplitude in the first waveguide can be represented by this

equation.

And so this  is  the  power  transfer  equation  and b  z  square  the  power  in  the  second

waveguide which can be represented by this equation. If I substitute this a s and a a in

back into the equation for the power of the individual waveguide. In this equation a z and

b z in place of a I will substitute that; in place of a s I will substitute the terms containing

that beta 1 beta s beta a and k 1. So, this quantity if I, so I will get that pattern for

equation. And this is the must general form of power transfer for weakly the interacting

waveguides and the form of directional couplers. And this a z square and b z square at

the powers in waveguide a and waveguide b are waveguide 1 or waveguide 2. So, this

equation  is  very  useful  and  this  is  very  general  when  you  consider  two  identical

waveguides then you can.

(Refer Slide Time: 22:23)

So, we write this equation in this form a z square and b z square. You can see that there is

a the periodic exchange of power between the 2 waveguide, that is the periodicity will be

twice pi is k twice pi by lambda this quantity.

So, 1 upon pi by this quantity will be the periodicity of the power transfer, which will be

periodicity along the z direction between the waveguide 1 and 2.



(Refer Slide Time: 23:03)

So, it  is obvious from this that there is a periodic exchange of power between the 2

waveguide. If we now considered that these the 2 waveguides, which are forming this

directional  coupler  they  are  identical.  In  that  case  this  the  modes  of  the  individual

waveguides  will  be the same and there will  be represented by the same propagation

constant, that is beta 1 equal to beta 2 is equal to beta naught. Let us suppose in that case

then beta s will be equal to beta 0 plus.

So, this will become kappa and beta s will be equal to beta 0 minus kappa. If you go back

and look at the equation for kappa 1 1 and kappa 2 1 so, beta s and beta a are now having

this reduced from. So, then for the symmetric mode beta s will become b 0 equal to b a.

So, you can look at the governing equation for b a and b 0, and for antisymmetric mode

you see that there is a minus sign. So, they are pi by phase out of phase in the second

waveguide, and that is what as I have shown here if we completely this plus this will be

minus  for  the  second  waveguide  where  as  in  this  case  both  of  them  are  the  plus

amplitude.

So, beta 0 equal to minus beta a whereas, beta 0 equal to. So, this is for the symmetric

mode and this is for the antisymmetric mode. This means a very interesting to see that is

beta 0 is the part of the amplitude of the field in waveguide 2. And beta a 0 sorry, b 0 this

is a 0 is the field in the waveguide 1.



So, they are now identical and they are of the same phase, that is why in a symmetric

mode you have this and you have this. Both of them are having the same amplitude

distribution as well as they are having the same phase. Whereas for the antisymmetric

mode you are in the b 0 equal to minus a 0; that means, the in the waveguide a this

amplitude is positive, but in the waveguide, b this amplitude is negative. Because of this

minus sign, but they are having the same amplitude because b 0 the magnitude of b 0 and

a  0  they  are  same.  So,  that  very  nicely  explain  this  even  and  odd modes  that  is  a

symmetric  and  antisymmetric  mode  as  an  outcome  of  this  couple  mode  equation

calculation for the identical waveguide.

(Refer Slide Time: 25:45)

Now we have seen that if these 2 waveguides are identical and if I substitute this beta s

and beta a by beta 0 plus k, and beta 0 minus k back into the this equation, into this

equation, then we can write this expression for the a z and b z in this form, it requires a

simple algebra calculation manipulation.

So, you can so that the amplitude in a is a sinusoidal function sin not kappa z. Amplitude

is b will also sinusoidal function, but is a phase difference of pi by 2 initial phase pi by 2

with this the power in waveguide 1 and waveguide 2 is then is, then the mod square of a

z and b z, which gives you cosine square kappa z and b z square will give you the sin

square kappa z. So, these are the 2 power transfer equation which comes from this a z

and b z calculation. Now coupling length in the power transfer equation, if you look at



this  or  the  power  transfer  equation  for  non-identical  waveguides  that  is  the  general,

waveguide  we have  2  waveguides  or  dissimilar,  then  this  is  the  equation  governing

equation for the power transfer.

(Refer Slide Time: 27:31)

So, here if we put that z equal to pi by 2, and under root of this quantity. At this distance

the length of the interaction between the 2 waves between the 2 waveguides, you can see

if  you put the value of  z  into that  into that  equation;  that  the length corresponds to

maximum power transfer because this will give a sin function equal to 1 and cos function

will become equal to 0. And is this length will be called the coupling length.
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So, over the coupling length the maximum transfer of energy that is b z square will be

equal to this for non-identical system, but if they are identical delta beta will be 0. So,

this is equal to 1. So, that is maximum transfer of energy will take place from a z square

and a z square at that moment will become equal to 0 and this will become equal to 1.

So, thus the maximum transfer of energy depends on delta beta. If delta beta is there is a

mismatch between the 2 waveguide, then power transfer is not maximum.

(Refer Slide Time: 28:38)

It is it is not 100 percent the field amplitude of wave guide 2 is much less than 1.
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This we can so with a plot computed the plot of the amplitude transfer for waveguide a

this is how it varies there is a small change because of the interaction. And in waveguide

only a small part of the wave is coupled over the introduction. So, this is the coupling

length over reach the maximum transfer of power takes place. This is the cross back state

when again the power goes back into the first waveguide and so on.

So, this is a periodic exchange of power between the 2 waveguide, and the 2 constituent

waveguides are dissimilar they are not identical.

(Refer Slide Time: 29:21)



But  it  beta  delta  beta  equal  to  0,  we  have  this  is  the  coupling  constant  coupling

coefficient. And the length that defines the coupling length, now comes out to be pi by

beta s minus. So, this is the difference in the symmetric and antisymetric mode that gives

you the coupling length.

(Refer Slide Time: 29:40)

And then the power transfer equation comes out like this is a z square equal to cosine

square kappa z; and which is very well known for identical waveguide coupler. And is

the foundation for many devices for understanding many interesting coupler devices.

(Refer Slide Time: 29:58)



Where L c, if I put back you get that b z square equal to 1 into back into this equation if

you putL c for z; then you will get beta square equal to b z square 1 a z square equal to 0.

That  means  the  complete  transfer  of  power  has  taken  place  to  waveguide  2  from

waveguide 1 where the power is now 0. So, this means entire power gets transferred

from waveguide 1 to waveguide 2. And if it so happened then beyond this there will be

again transfer of power from waveguide 2 to waveguide 1, which is called the cross back

state or the couple the coupling back state.

(Refer Slide Time: 30:38)

And then we can repeat this power variation in the 2 wave guide, where you can see that

there has been a complete transfer of power; taken place between the 2 waveguide and

this is the L c, the coupling length and you can also define the length overreach the

power  in  the  2  waveguides  are  exactly  50  50.  And  that  is  what  you  call  a  3  d  B

directional coupler, who will see some interesting applications of this 3 d b coupler in the

following sections.
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So, we have a visual favor of how this coupling takes place we have an input power in

the waveguide 1. And it goes to waveguide 2 and then it again comes back to waveguide

1 and again goes to. So, in this wave the periodic exchanger power takes place back and

forth between the 2 waveguide. This state is called cross state because we have entire

curve which 2, the second waveguide this is cross back state where the power is restored

back into the first waveguide.

(Refer Slide Time: 31:44)



So this is the supermode beating pictures very interesting to understand, I talked about

this that if you have a so this is the total the 2 modes of the composite structure which are

the odd odd mode and the even mode. The superposition of these 2 modes at z equal to 0

gives you just add them up because there is no phase difference between them. So, these

2 amplitudes  will  be added up to  get  a  power in  the first  waveguide,  which can be

assumed to be the input in the first waveguide. And as it propagates down the total the 2

modes  there  is  a  the  2  modes  are  characterize  by  2  different  propagation  constant.

Therefore, they will develop a phase difference as the travel down.

When the phase difference  is  pi  that  is;  the phase difference  is  pi  then you have to

subtract this mode from this mode which will now add these 2, but subtract this 2 will

make it 0, this will be added up we where the entire field a into the second waveguide,

but if the phase difference is 0 you have at the input then you have the entire power in

the first waveguide. But there is a position which is in between these 2 states where the

phase difference is just pi by 2, then you will get half of the power in this waveguide and

half of the power in this waveguide.

So, this is what you call that 50 percent coupling state of the 2 waveguide. So, this is the

beating of the 2 supermode, you have the 2 normal modes of the structure the even mode

than odd mode, which is like the modes of a coupled pendulum. So, when there in phase

you have one system to oscillate, when there out of phase the other system to oscillate.

When they are in between then both of them are oscillating with 50 percent  of their

power energy. So, this is a very interesting part that by considering the supermodes of the

structure, you can explain the coupling of the modes of the composite structure.
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So, in this discussion we have considered this planar directional coupler, and in terms of

the  coupling  coefficient  we have  also  looked  at  the  power  transfer  equation  for  the

general wave guide, then the 2 waveguides are non-identical. We also looked at the 2

waveguide when their power transfer when the 2 waveguides are identical and finally,

we looked at the configuration visually through the supermode beating picture.

Thank you.


