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Waves in guided structures and modes 

(contd.)

We will  be  discussing  the  simplest  type  of  optical  waveguide  namely  the  dielectric

interface planers slab waveguide.
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And,  in  the  discussion we will  look at  the  symmetric  nature  of  the  refractive  index

profile  and  the  TE  modes  TM  modes  of  the  waveguide,  then  eigenvalue  equation

symmetric  and  anti  symmetric  modes  which  we  will  see  is  a  consequence  of  the

symmetric refractive index profile. Then we will define a quantity which is very relevant

and very important is used for defining almost all kinds of optical waveguides, then we

will look at the a number of modes supported by an optical waveguide of this kind then

the field distribution across the waveguide.

Then there will be another important point that is the mode field that is the single mode

operation of the waveguide, this particular property is very useful extremely useful in

almost all applications then we will look at the cutoff properties of the various modes

which are supported by the waveguide. Then this consequence of symmetric refractive

index profile which will give rise to only symmetric and anti symmetric modes. So, with

these points in mind we will discuss the planer dielectric slab waveguide.
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So, this is one the simple most structure where you have the refractive index n 1 which is

sandwiched between the 2 same refractive index layers that is of refractive index n 2,

these are  the 2 interfaces  so that  there  a there  are  2 regions  region 2 and region 1.

Because, of the nature of the waveguide we assume that this y direction that is along this

direction the waveguide is infinite and there is a refractive index profile variation only

along this x direction.

But this variation is a constant it gives rise to constant homogeneous refractive indices,

so there is a change in the refractive index across the interface. So, we will look at this

property we assume that the thickness of the slab is d, so that and we set our coordinate

system across this middle axial line such that the upper interface falls at x equal to d plus

d by 2 and the lower interface at x equal to minus d by 2. So, these are the notations in

parameters that will use in the determination of the waveguide modes and eigenvalue

equations.

So,  in  this  case  the  wave  equation  that  is  satisfied  by  the  waves  which  will  be

propagating through this structure, in each of the homogeneous layer of the waveguide

will be given by this homogenous equation. That is we consider the TE mode therefore

this E y is the electric field component which is non managing and H x H z will also

associate with this E y. So, for region 1 that is within this layer which will got the core

and  the  other  2  layers  surrounding  this  core  will  be  called  the  cladding  is  the



conventional nomenclature. Where so n square of x the refractive index varies along this

direction, which is constant as long as this mode of x is less than plus minus delta 2. So, I

define this layer which will have a refractive index n 1 and otherwise everywhere this is

equal to n 2 square. So, the cladding refractive index is n 2 whereas the core refractive

index is n 1.
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So, for TE modes once again we will look at this configuration we have E y field which

are parallel to the interface planes E y and H field magnetic field components will lie in

the x z plane. So, it will  give rise to 2 components and this E y comes through this

equation that is this homogenous equation that is del square E y by del x square plus this

quantity into E y equal to 0. So, this the mathematical representation for the refractive

index profile and the wave equation for this structure as long as we are concerned with

the TE modes.
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For the region one that is the one this region that is this region within the core we have

this equation, because this n square of x now assumes a constant value that is n 1 square.

So, for the core we have this equation and for region 2 that is for the cladding there are 2

such regions, so we have this equation and we write this slightly in a modified way we

take this minus out and put it in this form. The intension is very simple because beta we

will see that beta should lie somewhere between k 0 n1 and k 0 n 2. So, to make it

positive beta square minus k 0 square n 1 n 2 square, this quantity will be positive which

is the transverse component of the propagation constant in the cladding and we call this

quantity as gamma square so I write this equation for cladding like this.

Then we define the mode parameters this we have seen these are the x components of the

k vector in the core and cladding, so kappa square is written as k 0 n1 square minus beta

square beta is the z component of the propagation vector beta is z and kappa will have a

x component and along y direction we have assume that the waveguide is infinite. So, we

get rid of the y component of this k vector, so the k x and k z these 2 constitute k k x

within the core we have called kappa and outside this k within the with the within the

cladding we call this is gamma and because n1 is more than beta we write in this way

whereas beta is more than n 2, so we write in this way for modes to be supported.

So, we will  look at  this condition later  with these definitions  then we can write this

equation that del square E y del x square plus kappa square E y equal to 0 for the first



equation and for the second equation we can write this del square E y by del x square

minus gamma square E y equal to 0. So, these are the 2 equations to wave equations for

E y governing the propagation of the electric field in the structure for the core and the

cladding.
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So, so the solutions to 1 and 2 the solution to this equation is very well known very well

known and it appears very frequently in physics, this equation will give you an isolated

solution for E y which can be written as A e to the A dash e to the power of i k x plus B

dash e to the power of minus i k x. I used dash because we can we can simplify this using

some different constants and for the cladding region. This equation will give you the

solution that is which will be exponentially decaying solution because, you have a minus

here this equation is also very well known in physics.

So, these 2 equations put together will give me the complete field solutions in the core

and cladding of the symmetric refractive index dielectric waveguide. So, we may write

equation 1 that is what I told just now that we can write in the sine cosine form, so this A

e to the power of i k x B dash e to the power of minus i k x can be simply written in this

form A cosine kappa x plus B sine kappa x. Now because of the symmetric nature of the

waveguide because this side and this side they are identical,  so both of them will be

treated with the same constant. So, therefore C and D are same as long as the waveguide

has a symmetric refractive index profile.



The variation of the field along with this direction and along this direction will associate

the same constant that is what the idea is and in that case this quantity the first part will

represent an exponentially decaying wave when x is positive. But this second part will be

representing an exponentially  decaying wave when x is  negative and because C e is

equal to D e. So, this will represent only the upper heart of the upper half of the interface.

So, the wave which will be which will be travelling across this layer will be e to the

power of minus gamma x, but the wave which will be travelling across this will be e to

the power of plus gamma x because x is negative here.

Therefore with this notation and convention we write this equation E y for d x greater

than d by 2 that is for upper half C e to the power gamma x and E y for the for the layer

below the lower interface will be represented whenever the C and D they are identical in

the case of a symmetric structure.
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Now, we will use the boundary conditions for the continuity of the tangential component

of the fields, so at x equal to plus d by 2 that is at the upper interface. At upper interface

we can use this E y must be continuous across the interface layer and that gives you a

cosine I just have to plug in that x equal to plus d by 2 on either side of this of this

equation  on  either  side  of  this  equation  this  equation  and  this  equation  in  these  2

equations we will use x equal to plus d by 2.



So, that gives you this condition and if I assume the continuity of the derivative of the

field that is del E y del x across the interface, which is also a continuity condition we end

up with this equation. Now, that if we just combine these 2 if we just combine these 2

equations multiplying 1 by gamma you just have to multiply one by gamma then this

quantity and this quantity will be same. But with a difference of minus sign and if you

then add then you will add up with this condition tan kappa d by 2 equal to A gamma

plus B kappa by A kappa minus B kappa is a very very well known equation. So, I have

used the continuity condition for the upper interface and that is for the field continuity

and the derivative of the field continuity I have not used the lower interface, which will

also give me the same boundary same equation same relation.
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So, to see that at x equal to minus d by 2 at the lower interface that is x equal to minus d

by 2, if I plug in this relation then I will end up with this equation this relation and also

from  this  continuity  of  the  derivative  of  the  field  will  give  me  this  condition  and

preceding in the same way that is multiplying 1 by gamma and then if we equate these 2

because in this case this right hand side will be equal and from there we can we can get a

relation. So, there is a slight difference between this A gamma plus B kappa, whereas in

this case A gamma minus B kappa and in the denominator you have plus; whereas, in the

earlier case it was minus but both of them will represent tan kappa by kappa d by 2.
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So, therefore these 2 must be equal to represent the same waveguide and same parameter

same structure this eigenvalue equation must be holding good. Now if you simplify this

will  give  you  a  condition  that  if  you  multiply  this  into  this  and  this  into  cross

multiplication will end up with this simplified condition twice A into B kappa square

plus gamma square. It is a very simple algebraic steps to execute, then we will end up

with this equation, now once we have this equation in hand it tells you 2 possibilities. 

First one is that that either kappa square plus gamma square must be equal to 0, in that

case gamma square equal to minus kappa square. But that means that means n1 and n 2

they are equal, if you look at the definition of kappa and gamma n1 and n 2 because beta

will cancel k 0 n1 square will be equal to k 0 n 2 square. So that means n1 is equal to n 2

that means all layers are the same there is no waveguide there is no interface so that is a

trivial condition. So, we will not continue with this condition we will look at this A B

equal to 0 the other possibility, so that means either A equal to 0 or B equal to 0.
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So, these 2 conditions will  lead to the other possibilities,  so this  one I  have already

explained that that kappa square equal to minus gamma square will give you no interface

and this is a trivial condition for this. Let us suppose we start with the condition B equal

to 0, then from this equation from this equation if I put B equal to 0 B equal to 0 then

you get that gamma by kappa and this gamma by kappa.

If I put this equation then the tangent value of this lets go to this, so tan k d by 2 will

become equal to B equal to 0 you have put so you get gamma by kappa, so tan k kappa d

by 2 will be equal to gamma by kappa. So that is the equation which comes out of the

condition that B equal to 0. So, I put B equal to 0 I get this condition and in the similar

way if I put A equal to 0 I will get this condition. In that case I will put when you put A

equal to 0 you get kappa by gamma the reciprocal of the earlier case that is an with an

negative sign right, so you get 2 conditions for B equal to 0 and A equal to 0.
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Now, eigenvalue equation so this defines the eigenvalue equations this, if I put this in the

solution of E y for the core that is mode x less than d by 2 I get this field solution which

tells you because it is a cosine function, so the fields are symmetric. So, this gives you

the  symmetric  field  distribution  all  fields  will  be  symmetric  and this  is  a  anyway a

evanescent field evanescently decaying field at the outer at the at the cladding region

starting from the interface. So, using this using this condition in this equation then we get

the eigenvalue equation using this condition.

We get the eigenvalue equation as this tan k d by 2 tan because in that case we have to

multiply d by 2 and d by 2 numerator and denominator if you bring it to the left hand

side you get k d by 2 tan kappa d by 2 equal to gamma d by 2. So, this is the eigenvalue

equation  corresponding to  the  symmetric  field  distribution  which  corresponds  to  the

condition that B equal to 0 and let us define this V number which is a very important

parameter for optical waveguides, V defined as k 0 half of the thickness this is different

in different text books. This is half of the half of the thickness and this is the numerical

aperture and n1 square minus n 2 square, so the core cladding refractive index square

difference.
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So, V square is equal to this quantity and you can see that the that you can write this

equation as k d square by 4 and gamma d square by 4 because, if you add one if you

subtract  1  beta  square  and  then  add  1  beta  square  this  quantity  will  correspond  to

correspond to kappa and the other quantity will correspond to gamma. So, that is why I

have written this V square is equal to this, so V square can be put into this form and you

can see that V square equal to x square plus y square if you call this quantity equal to x

and if you call this quantity equal to y.

So, you can write this equation which is the equation of a circle of radius V and these are

the equations which are the outcome of the of the eigenvalue equation. Now, now I so

this is the consequence of the definition of V number which appears in terms of the

kappa and gamma and this is the eigenvalue equation.
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Now to look for the solution of the modes [FL] in the same way in the same way A equal

to 0 e to the E y of x this will be the field solution and that corresponds to anti symmetric

modes and these the evanescently decaying field will be the same. Using this condition I

again from here can arrive at this condition which will be the eigenvalue equation for the

anti symmetric modes. We can actually put 2 of them together in 1 compact eigenvalue

equation which will represent both symmetric and anti symmetric modes.
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Now, again using V number for the anti symmetric modes we can write this equation

which is the same and for the eigenvalue equation now this time it becomes y equal to

minus x cot of x cotangent of x. So, we have 2 eigenvalue equations and one equation of

a circle.
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So, we plot them we plot them because we are looking for the solution of the modes, so

this is your x tan x this is your x cotangent x alternatively they are appearing and now I

draw a circle of radius V which is equal to this which is equal to this. So, at this point it

will be gamma d by 2 and at this point it will be kappa d by 2. So, this radius the point of

intersection of the circle with the curves B and C gives the solution to the eigenvalue

equation. 

So, you can see that this there will be one solution here for the value of V which is less

than pi by 2, here this will be less than pi again it is close to pi so on and so forth for this

value of V and if you increase the value of V we will get we will get more number of

solutions. So, it is the V that is going to decide V number we going to decide how many

modes will be supported in the structure.
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Now from this figure you can see when the value of V is less than pi by 2 is less than pi

by 2 because this line less than pi by 2. So, you have only one symmetric mode, but if

the value of V is between pi by 2 and pi between pi by 2 and pi then you have this point

of course, this encloses this point. So, you have one symmetric mode the value which

lies  between pi by 2 and pi  somewhere here then you can have one symmetric  one

symmetric mode and one anti symmetric mode. So, there will be 2 modes and in this way

if you proceed for the values of V which lies between twice m plus 1 pi by 2 and twice m

plus 2 pi by 2 that is within a spread of pi by 2 between these 2 positions.

Then you will have m plus one symmetric mode and m plus one anti symmetric mode

modes. So, this is simply just by induction of these 2 initial facts we can we can arrive at

the conclusion that the total number of modes will be supported that is equal to twice m

plus 2, provided that the value of V lies between this is twice m plus 2. So, this is the

total number of modes which will be supported, we will see how the modes look like

now equation A is so total number of modes we have supported.
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Now, thus this condition gives you twice m plus 2 modes and if this V lies between twice

m pi by 2 and twice m plus 1 pi by 2 between them, then the total number of modes in

the same way will be twice m plus. That means whether you are you are at the symmetric

mode or you are at the anti symmetric mode as the last point of intersection. So, in these

way you can generalize the condition that the total number of modes supported, in the in

the waveguide will be a integer which is closest to or greater than this twice V by pi. So,

this  is  a  very  beautiful  finding  and  it  is  used  for  determining  the  properties  of  the

waveguide when we know the V number.
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So, it tells you that this V number gives you many modes that is k d by 2 equal to x this

approximately equals to this quantity. So, the point of intersections are the solution so

this  is  a  rough  way  of  estimating  the  propagation  constants  for  the  various  modes

because, this at the cutoff at this point x equal to pi by 2 these are very close points you

can just have a look at it this is very close to pi this is also very close to pi by 2. But this

will be even more closer when you approach for large number of modes, so therefore, a

an  empirical  way  of  finding  the  mode  parameters  the  mode  the  mode  propagation

constants by using this relation ok.
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So, these are the mode field distribution you can see for m equal to 0 you have this

symmetric mode which is called the fundamental mode m equal to 0, for m equal to 1

you have the anti symmetric mode and for m equal to 2 you have again the symmetric

mode. So, these are the modes which will be supported in the structure.
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When V is less than 0 V is greater than 0, but less than 2 you have one symmetric mode.

So, for this regime of operation when I choose the waveguide parameters in such a way

including the wavelength, such that the V number falls between 0 and pi by 2 then the

structure we support only one mode and that is the fundamental mode such a waveguide

is called a single mode waveguide at that operating wavelength and you see that this

mode will be symmetric about x. All the even modes that is n m equal to 0 2 4 etcetera

will be all symmetric modes, so we have a and we call this wave waveguide as a single

mode waveguide which is very relevant and very important in the study of in the in the in

the signs of optical waveguide.
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For single mode operation V equal to V equal to this quantity because we have defined

this, so therefore the condition d is equal to half of lambda 0 n1 square minus n 2 square.

So, if the web guide dimension that is core refractive index and lambda 0 are such that

they satisfy this condition, then you automatically take care of the single mode nature of

the waveguide the waveguide supports one fundamental TE modes and it is referred to as

the single mode regime of operation.
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Let us take an example the core and cladding refractive indices are n1 equal to this,

which are the typical values for glass and planar optical waveguides and the wavelength

of operation is it  is equal to 1.5 micrometer. If you plug in this values in the in the

relation here then you get the value of d which is very close to 3.07 micrometer. If the

waveguide dimension is less than this wavelength of operation is this or below this and

the refractive indices of the core and cladding are these, then this waveguide will be a

single mode one for all wavelengths which are below lambda 0 equal to 1.5. 
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Then the cutoff property for guided modes you have this property because, anyway the

propagation constant has to lie between these for every mode. Now if they are critically

equal that is k 0 n 2 is equal to B 2 beta 2 then that is what we call the cutoff so that gives

you the condition. So, if gamma that is k 0 n 2 minus beta 2 square will become equal to

0 that is equal to gamma equal to 0, because of this condition so that tells you V equal to

kappa d by 2 which is equal to x. So, x tan x equal to 0 from the eigenvalue equation and

x cot x will be equal to 0 these are the conditions for symmetric and anti symmetric

modes and V end up with this condition that tells you for V c V c will be equal to 0, V c

will be equal to m pi to get this condition equal to 0.
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So, so that is so I just roughly take the value of m equal to 1 2 3 that gives me the value

of V c, the cutoff V value at which and below which those modes will be supported.

Fundamental mode has no cutoff because, you whenever there is some excitation it is

always the fundamental mode and you can see from this equation also that there is no

cutoff for the fundamental mode it is always present in the waveguide.
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Now, there is one issue one important point that if you consider a symmetric refractive

index profile of the waveguide you can write this mathematically like this and for TE



modes  you  can  write  down  this  equation  which  is  an  eigenvalue  equation.  If  you

transform x to minus x I can write this equation like this, you can see that both the

equations I mean both the both the e E of y E of E y of x and E y of minus x they satisfy

the same equation.
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So, both E y and E y of minus x satisfy the same equation hence these 2 are the Eigen

functions with the Eigen value. So, this means that these 2 are the degenerate steps or it

could be that this must be a multiple of E y. So, this possibility of degenerate sets can

also be shown to be the identically the same consequence. But if we consider E y of

minus x equal to lambda times this, this  will this  then again you transform this x to

minus x that is E y of x will become lambda into E y.
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So, I put minus x again put back x equal to minus x which gives you that lambda square

equal to 1, so that is lambda equal to plus minus 1. That means, E y of minus x is equal

to plus minus this is this is very clearly the condition of the symmetric nature of the

symmetric and anti symmetric nature of the mode profile. So, therefore if the fields are

either  symmetric  or  anti  symmetric  provided  that  the  refractive  index  profile  is  of

symmetric nature.
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So, you can see that E y of minus x equal to E y of x is a symmetric field, but E y of

minus x equal to minus E y of x then it is anti symmetric and so on. So, these are the

these are the consequence of a symmetric refractive index profile.
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Now, I conclude here by saying that the we discussed this symmetric slab waveguides for

the  TE  modes  we  will  take  up  the  TM  modes  next.  We discussed  the  eigenvalue

equations and then symmetric and anti symmetric modes even and odd modes which are

supported by this waveguide, we have try to depict the mode pictures also mode profiles.

Discussed the V number then from the V number how we can evaluate you can estimate

the number of modes that will be supported, field distribution of the modes then very

very particular thing about the optical waveguides is the single mode operation for this

slab waveguide that also we have discussed.

Then  we  discussed  the  cutoff  properties  symmetric  refractive  index  profile  and  the

consequence of that in terms of symmetric and anti symmetric field profiles.

Thank you.


