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Waves in guided structures and modes (Contd.)

So, we have seen the T E polarization and T M polarization waves propagating through

the interface structures and we have seen that how they give rise to the electromagnetic

waves as guided waves in the structure.
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Now, as a first example, we will discuss a metallic waveguide electromagnetic waves in

guiding structures and modes. We will look at the mode properties.
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And so, the. So, we have organized this part like we first consider a parallel plate metal

waveguide which is the simplest structure then and we will look at the T E and T M

modes of this structures and to do that, we will write down the electric and magnetic

field distributions field components and once we have these modes, then we will be able

to depict the electric and magnetic field distribution across the web guide.

Then, we will we will discuss the dispersion relations and cutoff properties that till where

till  which frequency the wave will  be supported and the wave will  not be supported

modes  of  the  rectangular  metal  waveguide  will  be  discussed  as  an  example  of  2

dimensional confinement of the waveguide.
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So,  we  first  consider  a  parallel  plate  metal  waveguide  the  structure  like  it  may  be

infinitely  extended  along  this  y  direction  and  along  this  y  direction  and  there  is  a

variation of the medium along the x direction that is the 2 plates are the metal plates. So,

and let us suppose that the separation between the 2 plates are x equal to d. So, is equal

to d. So, this is located at this is placed at x equal to d and the bottom one is that x equal

to 0 inside medium I represented by epsilon mu naught and this is a coordinate system.
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So, we will again refer to our configuration of this is very useful and a nice way of

understanding  the  modes  in  the  structure  you  have  a  possibility  that  you  have  a

possibility that the electric fields are tangential components.

Whereas, the magnetic fields are lying on the x z plane, which will constitute a T M

mode T E mode and the other one that is when the electric magnetic field is tangential to

the to the interface plane and the this magnetic the electric field will have 2 components

they are lying in the x z plane. So, that is what is the T M mode.

So, these 2 we have been able to very clearly dissociate in terms of the electric field and

magnetic field groups, which will be supported by the structure. So, the wave equation

for such a configuration we can start with this del square E equal to minus omega square

mu naught epsilon E and for the magnetic field we have a similar expression. Now, we

are looking for the solutions of the electric field from this equation and you can see that

this structure is invariant. This is our assumption that it is it does not vary along this z

direction and because of this the solution should be independent of z.

So, the z dependence. So, this the z dependence should be represented separately, the z

dependence of the solution. We have seen earlier can be represented by e to the power of

minus i k z z, but k z we have called is equal to beta which is the z component of the

propagation vector.

So, one part is clear that, if the wave is traveling along z direction and the structure is

invariant along this z, you can always represent that a electric field with a with a factor e

to the power of minus beta z.
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The wave equation for T E and T M modes for the by now, it is very clear if it has to

represent a T E mode. Then, it is the electric field component which will satisfy this

equation  and  for  the  T M mode,  it  is  the  magnetic  field  component  which  will  be

satisfying this component. This equation and this are these are these equations are valid

for the homogeneous medium each of the homogeneous layers which will constitute the

structure of the medium.
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So, for T E guided mode the electric field is transverse to the direction of propagation of

the wave the field will be represented by this. We have just now worked out and you

have seen that the field, the amplitude should depend only along only on the x coordinate

and it the electric field vectors are directed along the y direction.
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So, using the solution for this equation that e to the power of i beta z and e to the power

of i omega t from like this equation, this solution we can write this equation in this form.

This is the transverse, this is the z and x component of this del square operator multiplied

upon this and del square of oh. So, because there is no y dependence because there is no

y dependence.

So, this form reduces to this form only and further because del square del z square can be

represented as i beta square. So, that comes on to this side as minus beta square. So, you

have the wave equation for the E y field in the T E mode which is represented by this

equation.

And now, we will apply the perfect bound metallic boundary condition by saying that if

this problem is a one dimensional rigid wall, quantum mechanical problem, that is the

fields will be 0 exactly at the boundaries because they are metal boundary. So, at the

metallic boundary at x equal to 0, the boundaries are placed at x equal to 0 and x equal to

d. So, that the boundaries E y will be equal to 0 and at x equal to d; that is another

boundary the field will be equal to 0.
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So, and now also that this quantity that is omega square mu naught and epsilon minus k z

square  which  is  represented  by  this  equation  just  transforming  into  this  part  that  is

epsilon will be equal to epsilon naught epsilon r that is the relative or permittivity of the

medium which will be equal to n square and k z i write by beta square.

So,  I  can  rewrite  this  as  that  transverse  component  that  is  the  x  component  of  the

propagation vector because k y is equal to 0. So, this total k square proper the mod of the

k vector square will be equal to k x square plus k z square, but this is equal to beta

square. That is why I have got this form this connection.

So, therefore, I can write this equation in this form because this quantity this quantity is

nothing but k x square this quantity this is your total  k square minus z component y

component is not appearing. So, therefore, it is equal to k x square equal to 0. So, this has

the solution of this form this equation is well known in physics and I can write down this

equation as the oscillatory waves that A e to the power of minus and plus i k x and this

can also be written in this form as a sine cosine sinusoidal variation of the electric field.

So, E 0 and E 0 dash are the amplitudes.
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Now, we will use the boundary condition that is E y equal to E y equal to 0 at x equal to

0 which will immediately give you that if I put into this equation this is equal to 0. So, I

will get that E dash must be equal to 0. So, I get this equation E 0 sine k x, but k x cannot

be 0. It represents the waveguide structure and the second boundary condition. If we

impose that at x equal to d, again E y will be equal to 0.

So, E 0 sine k x d equal to 0 that gives you that sine k x d is equal to sine m pi and this

gives you the discrete values of this k x; that is the x component of the propagation the

transverse component of the propagation vector which are discrete because this m can

assume 1 2 3 all integral values. So, the solution becomes E of y equal to E 0 sine m pi

by  d  x  and  the  complete  solution  because  the  fields  are  now  directed  along  the  y

direction y axis.

So, y cap E 0 sine m pi x and this is the phase vector and there should be one more e to

the power of i omega t for the complete solution, but this is the wave.
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So, from the field configuration, we can also make out this solution you can also bring

out,  this  solution  not  by  doing  all  these  calculations.  All  these  following  this  wave

equation simply by just looking at the configuration that that you have your E field like

this which is incident and E field, which is reflected with a reflection factor of this equal

to minus 1 just because of this is a metallic boundary and as a result this quantity will

become minus.

So, this is a wave which is propagating along the positive x axis. This is this is along the

positive x axis and this is the one which is no. So, this will be minus because there is a

minus sign and this is the wave which will be the reflected wave, which is propagating

along the positive x axis. So, I take the superposition of these 2 waves which you can put

together in this form because e to the power of i k z Z will be taken out and you are left

with this part inside.

Now, if  you  multiply  the  numerator  and  denominator  by  twice  i,  this  equation  this

expression gives you that sine of k x x. So, and k x is already known that m pi by d. So,

we can again arrive at the same expression for the electric field y equal to E 0 sine m pi d

by x.

So,  just  looking  at  this,  so,  they  are  very  consistent  and  is  a  very  good  way  of

understanding how the electric fields are oriented in the structure; particularly in the case

of this metallic boundary condition.
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Now, the electric field solution for this we can write in this form and then it should look

like this is m equal to 1. If you put m equal to 1, then this will be equal to just pi by d and

depending on the value of the d, you have a distribution of the field, which will look like

this x and d when x equal to 0. This quantity is 0, this quantity is 0. When x equal to

when x equal to 0, this quantity is 0. When x equal to d this quantity is equal to pi.

So, again it is 0. Similarly, for 2 m equal to 2 if x equal to 0 this quantity is anyway 0,

but when x equal to when x equal to d this quantity equal to twice pi. So, sine twice pi is

again 0. So, you have this distribution for various distribution of the electric fields for

various possible values of m equal to 1 2 3 etcetera. So, this is how we can look at the

field distribution in such a metallic waveguide with 2 plates.
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 And then, the dispersion relation will come from this equation that this beta square plus

k x square will be equal to omega square mu naught epsilon naught. And this tells you

that the allowed values of the propagation constant. This should be will include the value

of m equal to 1 2 3 etcetera and this gives you beta equal to under root of omega square

mu naught epsilon minus m pi by d and m can assume 1 2 3 etcetera all these values.

So, this is the dispersion relation for the waves which will be the modes which will be

supported by the structure. So, you can knowing the value of m knowing the value of this

waveguide parameter d. The property and this omega the electric field we can calculate

the  propagation  constant  which  will  give  you  the  solution  for  the  waves  which  are

travelling  in  the  medium bound by the  2 plates  that  is  this  will  appear  in  the wave

equation as e to the power of i beta z ok.
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So, the cut off property that which of the which of the frequencies will be supported if

you look at the dispersion relation for T M modes we call this modes to be T M modes

because it has a general index m which can take up a 1 2 3 4 etcetera. So, these modes

will be T E m T E 1 T E 2 etcetera.

So,  beta  is  we have seen this  is  the dispersion relation  for  this  T E m mode if  the

frequency omega is less than this value; that is if you put the value of this omega equal to

this, then this quantity this quantity becomes purely imaginary. Because, this is now this

is now more than this quantity. If I put the value of omega square omega equal to this,

omega square will be equal to this m pi square by d by epsilon naught. So, that means,

this quantity will be and which is less. So, this quantity will be will be more and this

quantity will be less for the value of omega which is equal to this.

That means, the value of beta is now purely imaginary and the mode does not propagate,

but decays exponentially. We have seen in the evaluation field that if the beta value if the

exponent  becomes negative,  then that  it  becomes beta  or k x.  These things  becomes

imaginary, then the overall field will decay exponentially with the distance.

So, that is why the electric field, will this will decay exponentially through the structure

and that means, the then that the cutoff frequency is determined because these wave this

modes will not be able to propagate through the structure. And therefore, we set this

cutoff frequency as this that at this up to this frequency given by this we have the waves



which  will  be  propagating.  So,  the  cutoff  frequency  is  given  by  this  equation  this

expression. Now, the magnetic field we have talked about the electric field components

various components of the electric field.

Now, from there we can calculate the magnetic field simply by using this connection that

is curl of E is equal to some i omega mu naught times this magnetic field. So, H can be

calculated by knowing the electric field components E. So, H in this case we can write in

this form, you have seen that H will have the z component and x component and both of

them will take up the sign depending on whether it is moving up or whether it is moving

down.

Now, we can impose the perfect metallic boundary condition that H x at x equal to 0 is 0

and H x at x equal to d is also 0 and that condition is automatically satisfied here. If you

plug in this x equal to 0 x equal to 0 here and here, then this H x component of the field

will become automatically equal to this is the x component of the field and this is the z

component of the field, but x component of the field which is the phase a which is not

the tangential component that will be equal to 0.
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Now, now we will look at the configuration like the way we have seen the electric fields

from  this  configuration  we  can  also  make  out  the  field  dependence  the  z  field

dependence; that is in this case tau is again equal to minus 1. So, this is the reflection



amplitude coefficient if I take that tau equal to minus 1 and put together in this form. We

can write down this equation and which will be a cosine function.

Therefore, for the z component we have a cosine factor appearing here and if we work

out  for  the  x  component  as  well,  then  you  can  see  that  this  will  appear  as  a  sign

component. So, from this configuration also that is z and H z and H x and E y is actually

perpendicular  to  the  plane  of  this  board.  So,  it  all  becomes  consistent  with  our

formulation that we have done previously.
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Now, we will  discuss the T M modes the H field vectors are transverse in this  case

tangential component. So, the wave equation which will be satisfied by this H y field

component is this. And you can write in the similar way this equation which is exactly

the same as it was in the case of the electric field.
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And the this equation will have a solution of H y equal to H 0 cosine k x and in this case

in this case k x equal to m pi by d where m equal to 1 2 3 all the integral values the

solution. Now, becomes imposing the second boundary condition that at x equal to d you

have this condition to be satisfied. We have the discrete values of this k x, which gets

into this equation to get you give you the solution of the magnetic field that is H y is

equal to this.

The complete solution for this, then can be written in terms of this cosine function and

you can see that at x equal to 0 x equal to 0 the field is maximum at x equal to d the field

is also maximum and that is what happens in both the cases for m equal to 1 2. And for

all the integral values of m, we can find out and depict the field distribution across the

waveguide.
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So, electric field of this T M mode again will come from this relation del cross H equal

to this. Therefore, the magnetic fields can be the electric fields can be written in terms of

this. So, you have a z component of the electric field and you have an x component of

the of the electric field in this case and again this perfect metallic boundary condition

that at x equal to 0 and x equal to d, the fields will vanish. They are again satisfied here

and just check this.
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So,  the dispersion relation  in  this  case is  in  the same way that  beta  square plus the

transverse  component  of  the  propagation  vector  square  will  be  equal  to  the  total

propagation constant propagation vector mod square. So, that gives you this quantity

beta  square plus  k x square equal  to  this.  And therefore,  beta  m can be represented

because k x is known beforehand m pi by d. So, beta m is equal to this quantity which is

which from here we can again bring out the cutoff condition.
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So, the dispersion relation for this is given by this equation and for this T M mode. We

will call this modes to be T M m can have 1 2 3 all integral values. If the frequency

omega is again less than this, then this quantity becomes in imaginary in the same way

and the wave decays exponentially with the distance and you know that that imaginary

quantity  in the exponent with the oscillatory function will  give you an exponentially

decaying field.

And as a result, this mode will not be able to propagate and we can then set up the cutoff

condition which is decided by which is determined by this expression. And therefore,

omega c will be this. So, that gives you that till up to which frequency the structure will

support for propagation through the waveguide.



(Refer Slide Time: 21:45)

Now,  magnetic  field  components  we  have  seen  the  electric  field  magnetic  field

components  electric  fields.  So,  from  here  you  can  again  organize  looking  at  this

configuration you have electric field along you have you have this k x and k z along this

direction. So, that is why I have written this k x and k z as the phase factor, which is the

propagation  k  dot  are  basically  represented  by  this  2  quantities;  one  is  forward

propagating that is x positive, another is x negative and then in this case for magnetic

field this tau T M is equal to plus 1.

So, if I plug in this value of this tau, then I can rewrite this equation in this form which

will lead to this form of the equation. So, this is again a cosine function for H x. So, that

is what we have seen earlier also that it is a cosine function of the H x field. This field H

x field is a cosine function ok.
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So now, the as a last example in the case of metallic waveguide, in this discussion we

consider  a  hollow  metallic  rectangular  waveguide  and  this  wave  guide  is  having  a

perfectly conducting walls metallic sheet or metallic wall all 4 sides are now closed to

guide the electromagnetic waves. And let us consider this configuration that this is the

propagation direction this is x and this is y. So, z. So, x y z. So, this is how we will we

will put the coordinate axis.
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Now, let us remember that we have seen that all the transverse component of the electric

and magnetic fields can be represented in terms of the longitudinal components of the of

the electric and magnetic fields the same equation the 4 the set of 4 equations where k c

is the transverse component, that is the total propagation vector this is z component of

the propagation vector. So, this is the transverse component of the propagation vector.
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Therefore, the wave equations for axial field components E z and B z we can write in

this form omega square omega by c minus k square. Therefore, this equation this is for

writing B for H that  is  if  I  earlier  it  was because mu naught is  the free space.  And

therefore, we can write that this H equal to B H equal to a even place of H we can write

b. So, T E and T M modes are now represented by this condition that where E z equal to

0 you have T E waves and if B z equal to 0 you have T M waves.
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So, consider this waveguide with these structures and these parameters at x equal to a

you have a boundary a metallic boundary at a y equal to b you have another metallic

boundary and so on. So, it forms a rectangular pipe wave equation for this T E modes

can be represented by this. You have seen that for T E modes, it is B z equal to B z with

this equal to 0. We will solve it by separation of variables we assume that B z equal to

this is a product of this x dependent and y dependent functions.
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 Then, we can use substitute this into the wave equation and separate them. This is again

the  very  well-known  technique  of  separating  the  variables.  This  quantity  is  now

completely a function entirely a function of x and this quantity is only a function of y. So

now, putting these 2 things together, which is equal to minus k x square minus k y square

plus omega by c whole square, this will be equal to k square.
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So, we can write down the solution for this equation general solution of the, this first part

this one will give you this is again a very well-known equation in physics. So, d 2 X d x

square plus k x square into x equal to 0, which will give you this solution sinusoidal sine

and cosine function. Boundary condition if we impose that at X equal to 0 at x equal to 0

and x equal to a your x. This field will be will vanish because of the metallic boundary

and the continuity of the field that is the derivative of the of x will also become 0 at these

2 points at these 2 boundaries. And if I use these conditions, then we can write a must be

equal 0 because this thing equal to 0.
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And therefore, if I use this condition the second condition then, so, the solution becomes

this. Using the second boundary condition, we can again write that k x must be equal to

m pi by a the exactly in the same way, we did it for the parallel plate metals, but in this

case you have 2 such cases and they appear in the form of product.
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So, similarly the solution for y is also like in this form this was the solution for the x

field and this is the solution for the y part of the wave equation of the solution and this



again if you put the boundary condition. We can write that k y equal to n pi by b where n

equal to 0 we can take up all integral values.
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So, the total solution for this waveguide can be represented in terms of this, this is due to

the x part of the solution and this one is for the y part. So, put together, but a k x and k y

are also known from the boundary conditions.  So,  m and n are the integers  and the

combination of the m and n values will give you all possible modes for example, m equal

to 1 n equal to 1 m equal to 1 n equal to 2. So, you get all the T E m n modes 1 2 2 2 2 3

etcetera. So, these are the various modes which can be found out simply by plotting this

function as a function of x and y.
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So, using this condition, once again we can look at the dispersion relation and the cutoff

conditions.  We get the wave number in this  case as omega square minus k x square

minus k y square. So, square under root of that will give you this k which is the wave

number. Therefore, from this, this is equal to 0. This condition will give you omega this

must be less than this quantity omega must be less than this quantity. So, this is the

omega m n because in that case the wave number is imaginary.

(Refer Slide Time: 29:13)



So, that is what is going to decide the cutoff frequency. So, we can we can set the cutoff

frequency for the parameters given as a and b as the dimension of the waveguide and a m

and n being the solutions coming by the integral numbers 1 2 3 etcetera for m and n. So,

the wave number for this will be and instead of a travelling wave the fields are again we

have explained this exponentially decaying with distance. Therefore, omega m n is the

cutoff frequency for this modes.
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Now, we have tabulated the all the all our findings that the lowest cutoff frequency that is

for T E 1 0 can be written as this, this you can find out for putting one and this is equal to

0. So, omega 1 0 this is the and omega less frequent any frequency less than this will not

propagate in the structure and for that, this the wave number will be this where you can

substitute the value of m and n. So, in terms of the cutoff frequency.

So, you can represent the wave number of the wave which is propagating where you

know the integers m and n, then you can calculate this. So, the wave velocity that is the

velocity with which the wave travels in the structure that is v equal to omega by k and

this gives you the wave velocity for the wave for which I know the value of m and n. For

example, I look at the T E 1 0 wave then this omega will be omega 1 0 and if I substitute

this value, I know that the wave velocity will be this.

So, for various modes the propagation velocity will be different and as they propagate

along the structure, they will develop a phase difference. We will utilize this property in



some device applications group velocity for this the is given by d omega d k which is

this. And in that case again, also we can find out the group velocity that is the velocity

with which the energy travels in the medium by selecting the values of for looking at the

individual modes. For example, T E 1 0 I have to substitute omega one 0 for this and

then we can calculate the velocity wave velocity of propagation of this wave.
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Now, I look at this structure this is the wave front these are the yellow lines are the wave

fronts at regular intervals of the wave length and the wave is traveling in this direction

getting reflected back and forth from the upper and lower interface and you have also the

similar thing on side wise. So, the wave moves this wave moves the z component of the

wave that gives you the motion of the, that is the travel of the traveling of the wave along

this direction. That is with the velocity v and this k dash the propagation constant will

come from here.

You can look at this; this k will be decomposed into because you have k x k y and k z.

All 3 of them are present the value of k x is this the value of k y is this and the value of k

z we have called this is equal to beta. So, all of them put together will give you the total

propagation vector of the wave which is traveling within the structure. So, omega we can

calculate from here. So, c by omega will be k dash. So, that gives you this value. Now,

again  for  the  different  modes  m  and  n,  we  can  use  the  numbers  and  calculate  the

frequency.



So, cosine k dash cosine theta equal to k. This you can look at this cosine this is your k

direction  and this  is  your  z  component  of  k.  This  is  your  k prime  direction  k dash

direction and this is the z component of k. So, k dash cosine theta will be the value of k.

So, that is what it is written here. So, we can calculate the cosine of the angle that it

makes with this the wave makes with this, this incident and reflected waves.

So, which we can calculate that is v equal to c by cosine omega and this velocity with

which it actually the energy travels in this direction right. So, this v g and v energy travel

group velocity whereas, v is the phase velocity of the wave which is along this direction,

ok.
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 So, we have discussed the starting with a parallel plate metal waveguide there a T E and

T M polarization orientation of the wave and that that give rise to the T E and T M

modes. And, we have also seen the electric and magnetic field distribution across the

waveguide for various modes. They are dispersion relation cut off properties. 

We will also consider these T M modes in terms of the electric field and magnetic field

configuration,  they are cut  off  properties  and all  and also we have discussed a very

special  case of a rectangular  metallic  waveguide which is  very, very common in the

microwave technology.



And, we have seen the cut off properties the field distribution and in terms of electric and

magnetic fields within the waveguide and this background. We will now switch over to

we will now look at the dielectric wave guides, which are presently more interesting

enough sort of use in the form of devices.

Thank you.


