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Lecture – 18
Wave in guided structures and modes

We have discussed the reflection and refraction properties of electromagnetic waves at

interfaces. And now, with that background, we will switch over to the electromagnetic

waves in guiding structures  and wave guides.  We have also made some introduction

about the concept of wave guiding 3 interfaces.
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So, with that understanding in mind, we have organized the contents of the discussion.

Today, the transverse modes that is T E and T M modes in wave guides, then to do that,

we will  talk  about  the 2 dimensional  and one dimensional  refractive  index variation

along the structure and for that we will try to write the equation of the waves which will

be propagating through that structure.

In the process, we will derive this inhomogeneous wave equation and the related field

components, then the fields of the T E and T M modes in terms of the electric fields and

magnetic fields a set of electric and magnetic fields put together will constitute this T E

modes. And similarly, for T M modes also a set of electric and magnetic fields out of the

6 components of both electric and magnetic fields will be put together to represent this



transverse magnetic modes. Then we will write down this wave equation for the field

components ok.
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So, we have already seen that the T E polarized wave confirms this configuration; that is

your electric field is perpendicular to the plane of the board and magnetic field is lying in

the x z plane and this is your z direction, this is your z direction and there is a there is a

change in the in the refractive indices across these 2 interfaces.

So, the interface which is embedding this medium that is n 1 n 2 or n 3. So, for such a

structure, we can see that the electric field is purely tangential. So, that is represented by

E y whereas,  the magnetic  fields will  have 2 components H x and H z for this  T E

polarized wave and with respect to this structure, when the waves will be guided in this

structure, we will call this is a T E mod. And, in the same way, when we will look at this

configuration that they just the opposite; that is the electric field is now lying in the x z

plane.

But  the  magnetic  field  has  only  the  tangential  component;  that  is  H  y  and  such  a

configuration will correspond to this T M polarized wave and the mode which will be

supported by this structure will be called T M modes.
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Now, we have seen that the wave propagates through a structure which is between 2

interfaces and this tells you that we assume the interfaces, which is infinitely extended

along the y direction. In such a case, that is along the y z plane and in that case, you have

refractive index variation only along the x direction.

And so, this refractive index depends only on the x coordinate and you can represent this

index variation. The index term as n of x only and there is no dependence on the y and z

direction.  Because, along the y direction,  we assume that the structure is infinite and

along the z direction, it is invariant. The structure is does not vary. So, the example of

such a situation is a planar dielectric slab, you can see from this figure is a small portion

of the planar dielectric slab, which are very often used in integrated optic devices.
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Now, in  that  cases,  the  interfaces  may  form.  It  is  also  possible  that  the  interfaces

interfaces may form a rectangle or a circular pipe like structure like this; that is, you have

a 2 dimensional confinement not only the interfaces are along these direction, but also

along these direction. So, in that case, the wave will be confined in 2 dimension.

In  this  case,  there  is  a  cylindrically  symmetric  structure,  a  pipe  like  structure.  An

example of this is an optical fiber and this is a rectangular waveguide and for such a

situation the refractive index depends on both x and y coordinate. So, you can write that

refractive index variation in the form of n of x y.
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So, when the structure is x y dependent, that is you have refractive index variation along

both x and y direction. But, separately each of the each of the region is homogeneous

even though each of the region is homogeneous.

But the refractive index of each of the region, region is different from the remaining

others. So, in such a situation, the wave sees in general a refractive index distribution

which is n of x y we have understood that. So, we look for the wave equation for such a

structure and to do that, we will recall that Maxwell’s equation. Maxwell’s equation for a

charge free and current free region. So, rho equal to 0 j equal to 0 and you have a set of 4

Maxwell’s equation del dot D equal to 0 del dot B equal to 0 so on and so forth.

So, del this curl equation, you can write in terms of we assume that the media are non

magnetic all the media involved are non magnetic. So, you can write in place of mu, mu

naught which is the free space permeability and del H del t and for del cross H. I have

this epsilon; that is the permittivity of the medium of each of the layers and you can write

this as epsilon naught n square square of the refractive index. So, del E del t. So, this is

how we start with the 4 Maxwell’s equation and if you take the curl of the first equation,

that is del cross del cross E.
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So, you can write this curl of curl of E is equal to minus mu naught del, del t of del cross

H. But, this del cross H is again given by the second curl equation that is equal to epsilon

n square del E del t. So, if I substitute the expression for del cross E, we can write down

that del cross del cross E is equal to minus mu naught epsilon naught n square del square

E del t square.

So, for the L H S part of this equation, we use this well-known identity curl of curl of E

is equal to del of del dot E minus del square E. Now, this time, this del dot E is not 0, but

del dot D equal to 0. Because, this we have seen del dot D equal to 0 that comes directly

from the Maxwell’s equation. So, del dot D equal to 0. So, from this equation, that is the

one which we have been able to write now that the right hand side is this and the left

hand side of this equation is this.
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So, I write this equal to this and then del dot E, this quantity 2 to see what it is, what it

represents del dot D equal to 0. So, you can write the del dot D equal to epsilon del dot n

square E n depends on x y. And therefore, epsilon del n square dot E simply use this

identity and you can write in this form, but this del dot D equal to 0. So, you can write

this expression as equal to 0. So, this quantity must be equal to minus of this. That is

what is written here; del n square dot equal to minus n square del dot E that gives you the

value of del dot E that is del dot E equal to minus del n square by n square dot E.

So, this time, it is not 0 which was 0 in the case of homogeneous medium del dot E was

0. But this time, it is not. So, it appears in the wave equation because, I will replace this

del  dot  E  del  of  del  dot  E  by  this  quantity.  So,  I  get  the  wave  equation  for  this

inhomogeneous structure that del square E equal to del of del n square dot E and then

right hand side as it is. So, this equation represents the electric field for inhomogeneous

wave equation.
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Proceeding for the magnetic field, we can similarly write down the left hand side that is

curl of curl of H which is equal to del t of curl of D, but this curl of D. You can again

write in this form epsilon naught curl of n square E. So, using this identity for del cross n

square E. Here, for the R H S part, we can write down this equation del n square cross E

plus del del t of del cross E.

Now, you can write this equation this one is equal to minus of because del cross E is

again known to us before hand is equal to mu naught epsilon naught epsilon naught n

square mu naught del H del t with a minus sign. So, altogether it becomes a minus sign

mu naught epsilon naught n square del square H by del t square which is the right hand

side of this equation.
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And for the left hand side, again we will use this identity and, but this time, del dot H

equal to 0. The medium is non magnetic and del dot B equal to 0 means del dot H is also

equal to 0. So, the left hand side gives you minus del square of H.

So, the equation complete equation becomes minus del square of H equal to this quantity

minus mu naught epsilon naught n square del square H by del t square. So, as a result, we

can reduce this equation into this form and it is somewhat similar to the one for the

electric field, but there is a difference and we will see that for the T E mode the scalar

equation retains whereas, for T M mode this equation becomes valid.
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We will see. So, the wave equation for the wave guides inhomogeneous wave equations

for the E and H fields, we can write side by side just to compare that there is a there is a

difference in the middle term, which has appeared here in the case of inhomogeneous

medium. But, this term as a check point. You can check that if there is no if the medium

is homogeneous; that is if there is no del n square, then this quantity becomes 0 and this

equation  reduces  to  the  form of  homogeneous  wave  equation  and  likewise,  for  this

quantity also for the magnetic field part.

If del n square itself is 0 for homogeneous medium, the equation simply reduces to del

square a is equal to mu naught epsilon naught n square which is the same old equation

for the homogeneous medium. But, from these 2 equations, these are the observations we

can see that E x E y E z are coupled in inhomogeneous medium you have E x E y E z.

They are coupled and similarly for H x H y H z.

They are also coupled for homogeneous medium the second term this is just we have

discussed that for homogeneous medium. The second term of the L H S, it becomes 0

because there is no del n square and also for this part and it reduces to it reduces to the

wave  equation  for  homogeneous  medium.  But,  each  Cartesian  components  of  this

equation will satisfy the scalar wave equation each of the components for example, E x E

y E z H x H y and H z. All of them will satisfy the scalar wave equation.
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Now, for the wave guides where refractive index varies only in the transverse direction,

that is a along x y that is n of x y.

So, we can write this n square equal to n square of x y for these equation. Wherever I

have n square and writing each Cartesian components of each of the above equations ,

you can see that t and z part can be separated out; t part can be separated out from here

and  z  part  because,  it  has  a  transverse  dependence.  But  there  is  no  longitudinal

dependence; that is there is no dependence on the z direction. So, these 2 parts can be

separated out.  We can just  simply work out take the component  of each of the field

components and then we can see that t and z can be separated out.
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 So, if refractive index does not involve z coordinate, that is if it is independent of z that

is to say that the refractive index is a function of only x and y. But, there is it is not a

function of z. In that case, the solutions of the wave equations can be written in this form

because we have been able to isolate the z part z dependence and we have been also able

to isolate the time dependence.

So, they appear in this form, but x and y part remains together in the amplitude of the

electric field. So, it is the amplitude of the electric field which is a consequence of the of

the refractive index distribution across the waveguide. So, this is the form of the electric

and magnetic field. This these 2 forms will be used; we can further simplify. We will see

later that if it  depends on only x or only y, then it will be even simpler. It will only

depend on x and y. So, and here what we have used that beta is the z component of the

propagation vector. So, that is a general notation. We have already introduced that beta

equal to k z because, it is the wave propagates along the z direction.
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 Now, for the wave guides with refractive index 2 dimensional variation of the refractive

index that is n square equal to n square of x y. The waves propagating along z the form of

the field vectors are also these are by now all established.
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 And now, we will switch over to a simpler form that where the refractive index varies

only along the x direction; that is an one dimensional refractive index structure, you have

2 interfaces one at the top, one at the bottom and the wave will be wave will be confined

between these 2 interfaces. So, the wave and will be propagating along the z direction,



we assume that  the along the y direction,  the structure is  invariant  and also along z

direction the form of field vectors. In this case, as we have mentioned because, it does

not depend on the y coordinate.

So, the electric  field will be represented by E 0 of x only and this  phase factor will

remain the same. And similarly, for the magnetic field, it will be E 0 of y function of x

there will be a variation of the amplitude of the magnetic field and along the x direction

and  also  for  the  electric  field.  So,  look  at  this  T  E  polarized  wave  for  this  one

dimensional structure you have an electric field which is directed along y.

Which is directed along y in this is the structure in which electric field is directed. So,

this is E y whereas, the magnetic fields will have 2 components that is x and z in the T M

polarized wave. We have this magnetic field which are the tangential component and will

be directed along y direction and the electric field will have 2 components.

So, for T E polarized wave we will have 3 components of the field vectors E y H x and H

z. Similarly, for the T M polarized wave you have 3 components of the field vectors H y

E x and E z. So, these are the group of 3 field vectors, which will constitute individually

this transverse electric transverse electric polarized wave and transverse magnetic field

polarized waves which so, from the Maxwell’s equation, now we would be interested to

look at the individual dependence of the field components.
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 So, if I concentrate on this del cross H and look at the x component y component and z

component of this equation, then it should give us how they are related. So, if you take

the x component of this curl equation, we can write del H z del y minus del H by del z

equal  to  this.  But,  since  there  is  no  y  dependence  of  the  wave for  one  dimensional

structure, we have this equal to 0; that is wave is propagating along the x z plane.

So, this reduces this equation in this form and finally, we can we can write this equation

as because we also know the time dependence of the field. So, you can write this in terms

of i omega will be detached for the del t operator. So, this equation represents the x

component of this equation. So, H y you can write in this form omega epsilon naught n

square by beta into E x. So, H y and E x, they are connected in this way.
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Similarly, if you take the y component of the field, you can represent the field in this

form and which will reduce to this form and for the z component again you will have del

H x del y because, there is no dependence along the y direction. So, we can write this

putting this quantity equal to 0. We can write the relation between H y and E z in this

form.
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Now, we will take the curl equation for the so, from here, if we summarize all the 3

equations,  that  is  this  one this  one and this  one if  you put  together. So,  you have x

component of the field has given you the connection between E x and H y; y component

of the field H x H z is connected to a E y and for z component you have a connection

between H y and E z.
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And in the same way, if we look at the components of the of the curl equation like x

component y component and z component and we do the same operation we can. So, that



H x will depend on E y. In this way, E x E z and H y will have a dependence, in this way

H z and E y. So, these are again 3 set of 3 equation set of 3 equations from obtained from

this curl equation del cross E.
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So, you have for T E modes H x H z E y we have seen that because in the case of T E

mode, you have electric field which is tangential. But, this will also associate itself with

H x and H z. So, put together all these 3 field vectors will constitute the T E mode and

you can see how we have organized that this and this they have come from the curl

equation of H curl equation, and this have come from the curl equation of E. So, these

are the 3 equations to represent the T E waves and these are the 3 equations to represent

the T M waves. So, we have been able to separate the T E and T M fields.
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 Now, look at this. This I have already mentioned that H will have 2 components; E has

only the tangential component. So, this is a T E polarized wave and similarly, this one is

the T M polarized wave where you have H y is the only tangential component, but E x

and E z are also associated with this wave propagating in this structure.

(Refer Slide Time: 23:11)

 Now, from H x equal to this equation, the equation which has which has been mentioned

H x equal to this. So, from this equation, if you substitute the value of E y from equation



2 that  is  the  other  equation  that  is  you really  have  to  play  with  the  all  available  6

equations.

So, if I substitute the value of E y from this equation from equation 2, then you can write

that this is the expression for E y and multiplied by i beta has given you this equation.

So, if you open up this bracket, then you can write this equation in this form. As a result,

you can write this equation in this form because you have you have H x H z E z. So, E z

H z and here you have H x. There you have H x on the left hand side.

(Refer Slide Time: 24:18)

So, this equation will give you this form that H x can be written in this form and here if I

if I write this equation, this quantity epsilon mu naught epsilon naught n square, you can

you can make out what it is epsilon naught mu naught is equal to 1 by c square.

So, omega square by c square is k 0 square into n square that is equal to k square and k

square minus beta square. This quantity is now equal to k square k square minus beta

square is equal to k c square we write simply here. So, this k c square this k c actually is

the  transverse  component  of  the  propagation  vector  because  this  is  beta  is  the  z

component. This is the total which is equal to k x square plus k y square plus k z square,

but this itself equal to k z square.

So,  k c  square is  nothing but  k x square plus k y square.  So,  that  is  the transverse

component of the propagation vector. So, we can use this H x. From here we can write



down that H x equal to this quantity will go to the denominator on the right hand side.

So, I can write i by k c square omega naught omega epsilon naught n square del E del E z

del y and this. So, this will now become the H x field.
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 Similarly, one can show that H y equal to this quantity and E x equal to this quantity E y

equal to this quantity. In the same way, if I just proceed and play with the all available 6

equation, right now one interesting point here is that by doing this, we have been able to

express the transverse component of the electric and magnetic fields; that is H x H y E x

E y. All  these  4  transverse  components  of  the  electric  and magnetic  fields  are  now

represented individually by only the longitudinal components that is E z and H z in some

form and here also H y is represented as a function of E z and H z E x.

Similarly, E z H y E y in the same way E z H z. So, this is a beautiful outcome that we

have been able to express the transverse field components in terms of the longitudinal

field components. So, that means, all the transverse components of electric and H fields

can be obtained from only the axial components. That means, if you know E z and H z,

then you can calculate H y, you can calculate E x, you can calculate E y and all the

transverse components can come only from the knowledge of E z and H z.

And, it may so happen that E z is equal to 0 in some situation in some other situation H z

equal to 0, then it becomes even simpler. Because, your field component will depend

directly through this relation to the individual transverse components, this fact allows



more designation T E T M and T M because, whether you have a transverse electric field

whether  you  have  a  transverse  magnetic  field  and  so  on  whether  you  have  both

transverse electric and magnetic field.
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So, this is the fact which tells you how. So, case one that for T E modes you have H x H

z E y equal to 0. So, E z equal to 0 E z equal to 0 you can look at this. This components

which constitute the T E modes, here E z is missing; that means, E z equal to 0. But, H z

is not equal to 0; that means, all E components are transverse to the direction of the

propagation. So, just from the knowledge of H z you can calculate H. H x H z and E y

with E z equal to 0 only solutions of H z needed to find all the components of E and H

fields; that is what just I have mentioned for case 2.
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If T M equal if you consider the T M modes in that case, you have these are the these are

the field components which constitute the T M modes E x E z and H y. So, H z is equal

to 0. Obviously, because it is not appearing in this the this equal in this electric field

components which constitute this T M modes. And therefore, E z is not equal to 0.

So, all H components are now transverse because H z equal to 0 only solution of E z is

needed to find  all  the components  of  E and H fields.  This  is  what  I  have  just  now

explained that it is only the longitudinal components that can constitute all the transverse

components. But eventually, in this case in this case your H z is 0.

So, it is only the E z component of the electric field. If I have the solution for that, this

can  give  me  all  the  transverse  components  because,  in  this  case  the  transverse

components are only E x and E z now and for similarly for T M mode, both E z and H z

both of them are 0 and in that case we can actually calculate all the connections.
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Now, looking at this expression, this is one of the field expression one of the connection

out of there. So, 6 equations if you if you now rearrange this equation that if you replace

this H z by a connection with E y H z a connection with E y this quantity, then you can

write this equation as this. And again, because it involves H x, I will have to replace this

H x by E y again. So, that the entire expression is now in terms of E y and you have E y

on the left hand side. So, this gives you an expression which is completely depending on

the E y and that forms the wave equation.
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For the E y component  of the electric  field,  similarly  equations,  so this  is  the wave

equation for E y component of the electric field E y you can actually organize those

equations substitutions and arrangement and algebraic manipulations to arrive at all other

components  of  the  wave  equations  by  playing  with  that  6  electromagnetic  field

equations.
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So, today in this discussion, we will continue with this for the wave guides and we will

use this wave equations for solving the wave guide modes. So, but in this discussion to

just begin with, we have talked about the T E and T M modes and how they are related to

the T E and T M polarized waves 2 dimensional  and 1 dimensional  refractive index

variation and of the and the structures involved in.

And some examples also in homogeneous wave equation and then the field components

related to that the fields of T E and T M modes. And we have also shown how each of the

field component can be represented to an wave equation which will be uncoupled which

will just represent one component of the field to show the a wave in the structure.

Thank you.


