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Lecture — 17
Wave propagation in layered structures (Contd.)

So, we have seen the electromagnetic wave propagation in 2 layered structures;
particularly, in terms of the reflection and transmission, amplitude reflection coefficients,
energy transmission and reflection coefficients. Now, we will consider the reflection and
transmission particularly the general propagation of electromagnetic waves through

layered structure a 3 layer and multi layer.
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So, we will organize this discussion in this way that, the normal incidence at a thin film
we will consider reflection and refraction. We will consider the field components and
impose the continuity conditions. And we will see that how we can devise a transfer
matrix which will help us to determine the electric fields at successive layers by knowing
the information of the electric and magnetic fields in the first layer or the previous layer.
And then we will consider few applications, some anti reflection coating, will we will
discuss the Fabry Perot etalon results which we have seen earlier. Then we will switch
over to the multi layers, normal and oblique incidence, interference filter, Bragg

reflection and so on.



(Refer Slide Time: 01:56)

3-layer dielectric-dielectric interface
!
L I | E
x=d,
A
Consider a film: P
two-interface structure ™ dy| E;* i
And consider: lukd SN W :
lincid y z
normal incidence n El"‘% % B

' NPTEL ONLINE -[Putlfnu ‘:'.Rc_lf(i}:lwn;‘nun

IITKHARAGPUR CERTIFICATION COURSES

Physics

So, for a 3 layer dielectric dialect interface consider a film, the refractive index of the
film is n 2 which is surrounded by the by the layers of refractive index n land n 3. And
let us consider the normal disc incidents so, in this case, but again we will switch over to

oblique incidence, but first for the case of simplicity we will consider normal reflection.

Let us consider that the electric field is incident along this direction and we designate this
electric field by E 1 plus. And from this interface part of the wave will be reflected, the
electric field reflected from this interface will designate that E 1 minus. And, similarly
for the second layer that is the film this will be designated by E 2 plus and the one which
will be reflected from this interface will be designated as E 2 minus then similarly E 3
plus and E 3 minus. The thickness of the film we consider as d 2 because this is the

second layer.
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Then we can write down the fields, electric fields and also the magnetic fields we will
see later. In the different layers for example, E when x equal to 0, we have placed the
coordinate system in this way this is x along which there is a variation in the refractive
index. And this is y, which is along the direction of the along the interface plain.
Therefore, the electric field in the in this layer which is x less than 0 is equal to E 1 plus

a forward propagating wave i k 1 x with a minus sign.

Because, this is moving in the positive of x direction and this is the reflected one is E 1
minus and because it is propagating in the negative x direction therefore, there is a plus
sign. For the middle layer that is x greater than 0, but less than d 2 we can write this field
equation in this way where E 2 plus and E 1 minus they are the forward propagating and
reflected wave. And similarly, for the third layer we can write down this equation in this
form because, now this wave has already traveled a distance d 2. So, we can write this
equation as e to the power of i k 3 d 2 into this exponential, this oscillatory variation of
the field e to the power of minus i k 3 x and so on for the transmitted for the reflected

wave.
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So, having known this electric field components in the various layers we can now find
out the magnetic fields by using this equation that is H equal to k cross E by mu naught
omega. Now, since k and E are perpendicular to each other we can write that k cross E is
simply the product k into E. And so, the magnitude of H will be represented by this k
naught n E by mu naught omega using k naught c is equal to omega we can simplify this
magnitude of the magnetic field in terms of the electric field magnitude as n by mu

naught c times E.

So, H in the lower layer, first layer we can write down in this form because from this
equation we can see that H will have z component. So, n 1 by ¢ mu naught e to the power
E plus e to the power of minus i k 1 k 1 is the propagation vector in the first layer

therefore, we can write in this equation.
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And similarly the fields at various layers will be of this form for x less than x less than 0,
we can write this magnetic field in this layer in this form, but it is again in terms of the
electric field components. Similarly for the middle layer that is x greater than 0, but less
than d 2. We can write the field magnetic field in this way you can also calculate the
magnetic field in the third layer using the same relationship. So, by now we have electric

field and magnetic field components in all the 3 layers.
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So, having known this thing, we will now utilize the continuity condition for both E and
H. They are in this situation this particular case both of them are tangential component,
electric field vectors and magnetic field vectors both lying in the interface plane. So, k
and E are perpendicular which has given me this relation which have seen and then H in
the lower lyceum, this also have calculated ok. Now using the continuity condition we
can write the first equation at x equal to 0 at x equal to 0 you will have E 1 plus plus E 1

minus.

And for H field at x equal to 0, we will have this relation at x equal to O that is at this
interface this quantity will become E 1 plus minus E 1 minus multiplied by n 1 upon ¢
mu naught. So, that is what we have written here so, and from here if I transpose if I if
take this n 1 to this side, then I can write down this equation which is the consequence of
continuity of the magnetic field at x equal to 0. So, I have a pair of equations 1 is plus
between E 1 plus and E 1 minus another is E 1 plus and E 1 minus with a minus sign

between them.
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So, these two equations, if we write together then we can form a matrix equation. So, we
can write this pair of equations in this form E 1 plus E 1 minus and a coefficient matrix

which is given by this and the electric fields of the second layer.
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Therefore, this matrix equation this matrix equation can be rearranged in this way to

write to represent the electric fields of the first layer in terms of the second layer.
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And this if we put together these two matrices, then we can write E 1 plus E 1 minus is
equal to this coefficient matrix into this electric fields of the second layer. This matrix
can be called as S 1 because; it transfers the information of the electric field between E 1
and E 2.



So, this S 1 matrix which contains r 1 and t 1, which are the reflectivity and trans
reflection amplitude reflection coefficient and amplitude transmission coefficient. So, in
terms of this I can write S 1 equal to this equation. And this tells you that electric fields

of layer 2 using those of layer 1 can be expressed by a by a matrix multiplier S 1.
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And this process can be continued for other layers as well for example, if I have this
electric field information in the third layer I can connect to the second layer and vice
versa. And in that case, the coefficient matrix will look like this 1 upon t 2 then e to the

power of i delta 2 r 2 e to the power of 1 delta 2 and so on.

Where this delta 2 is equal to k 2 d 2, d 2 is the thickness of the layer and this k 2 twice
pi upon lambda for the second layer. So, and again r 2 the amplitude reflection
coefficient and amplitude transmission coefficients corresponding to the second and third

layers will appear here in this form this would be r t 2 this should be t 2.
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Therefore, if I connect both the layers using these two equations this 1 and this equation
that is I write in place of E 1 plus E 2 minus E 2 plus E 2 minus column vector as this.
Then we can write this equation in this form that is E 1 plus E 1 minus can be related to

E 3 plus and E 3 minus through a multiplication of these 2 matrices S 1 and S 2.

And if we calculate this product of S 1 and S 2 because they are 2 by 2 matrices the
result will be another 2 by 2 matrices square matrix at the coefficients a b ¢ d can be
calculated as this for a b for ¢ and d. So, they will containt 1t2 r 1 r 2 and delta 2 so,

these all these parameters are known.
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Therefore, we can now look at the film and consider the situation that because this layer
n 3 is infinite and there is no reflected wave in these direction therefore, E 3 will be equal
to E 3 minus will be equal to 0 whereas, E 3 plus is a quantity which is non-zero. So, if I
use this E 3 minus equal to 0, in this equation in this equation. Then this part will become
0 and we readily get that E 1 plus is equal to a into E 3 plus look at this E 1 plus will be
equal to will be equal to a into E 3 plus and E 1 minus will be equal to E 1 minus will be
equal to ¢ into E 3 plus. Therefore, the amplitude reflection of the total film can now be
calculated for the total field for the total system can be calculated as r equal to E 1 minus

by E 1 plus.

Which will be the reflected wave from the overall film and this comes from this E 1 plus
E 3 plus ratio that is ¢ by E 1 plus and E 3 plus which will be equal to ¢ by a because, I
have to divide this equation by this which will give me this relation. Then amplitude
transmission of the film can be in the same way can be represented by 1 by a that is I just
take this equation. So, E 3 plus by E 3 E 1 plus will give me 1 upon a which is equal to

this is very interesting and from here we can find some old relations.
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So, this is the this equation will give me the energy reflection that is the reflectivity
which will be the mod of the square mod of this amplitude reflection coefficient. And
this can be written in this form the square of this quantity that is mod of this quantity
mod square will give me r 1 square plus r 2 square mod square plus twice r 1 r 2. And the
phase factor that is cosine of twice delta in the denominator this would be 1 plusr 1 r 2

and then twice r 1 r 2 cosine 2 delta.
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So, this is now complete and we have that energy reflection from the film in a compact
form. And similarly for the transmitted wave we can also calculate the transmittivity
using the same principle that 1 upon a if I take the mod of that. That is t square will
appear, but because it involves 2 layers that is E 1 and E 3. Then this will come with this

coefficient n 3 upon n 1 and this give me this will give me this expression.
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So, we have this reflectivity of the film as this and the transmittivity of the film as this.
These two put together if we take the sum of these two we can again see the conservation
of energy that is the energy reflected and transmitted will be equal to 1 which is very

simple to check.
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Now, we look at the condition for minimum reflectivity if I consider this expression this

expression, this quantity will be minimum when this cosine 2 delta 2 delta 2 will be
equal to minus 1. Because in that case, I will get an expression r 1 difference r 2 mod
square of that and in the denominator I will get 1 difference r 1 r 2 mod square of that.
Because this quantity will become minus twice r 1 r 2 here also it will become minus
twice r 1 r 2. Therefore, this when cosine 2 delta 2 equal to minus 1 then, the condition
for this to appear is twice delta 2 will be equal to m plus half pi where m equal to 0 1 2

all integers and since delta 2 is equal to this.

So, we can write delta 2 in terms of this. This gives me the condition for this quantity
that is cosine twice delta 2 equal to minus 1. As the film thickness d 2 should be lambda
by 4 times n 2 3 lambda 0 by 4 times n 2 5 all odd integers of the factor lambda by n 2 4
4 n 2. So, I can retrieve the condition for the film thickness for which the reflection will

be minimum.
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A special case is that under this condition d 2 equal to this we find that cosine 2 delta 2
will be equal to minus 1. And the reflectivity of the film is in that case, will be the
minimum. That is this we have already seen r 1 minus r 2 square of that and 1 minus so

this is the minimum reflectivity condition.
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Now, under this condition minimum reflectivity is this, but the reflectivity will become 0
R equal to 0 will give me a condition that n 2 will be equal to under root of n 1 n 3. So,

this is the condition if we can choose the values of n 1 and n 3 in such a way that the



product of these will be equal to n 2 square. Then we will get back this condition for a
thickness d 2 we will get R equal to the reflectivity will be equal to 0. So, that is if I
choose these values n 2 n 1 and n 3 according to this equation this expression then there
will be no reflection from the film. And that is what is called the anti reflection and by

choosing these refractive index materials, we have this anti reflection coating.

(Refer Slide Time: 19:34)

Anti Reflection Coating: example

Consider RI's : n, =10, n, = 1.62 v %ﬂ
then required : n, =+ynn; =1.273 i5 C ,

.|1 I V‘ Ll | ‘ - \
at wavelength : 4_=5500 A s :‘ -
5= M Anti Reflection Coating
in,

On substituting: d,  (2m +1)1080.13 A

D RN .
T KHARAGPUR 4 E{E;%ﬂ%gfqmums Sactha H\t‘-”-t.}l(llu.‘]lultl
Physics

Let us look at this values for example, which are very practical numbers n 1 for air it is 1
n 3 we choose as this and n 2 equal to this. So, at a wavelength lambda equal to 5500
angstrom the value of d 2 which is equal to an integral or integral multiple of 1018
angstrom we can make an anti reflection coating. See the example, when there is no
coating there is a reflection from this spectacled glass, but after the coating there is no
reflection. So, this is a very beautiful example of anti reflection application of anti

reflection coating.
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Now we will look at our old notion about this Fabry Perot, but this time we will use this
matrix equation consider a film Fabry Perot etalon, which is which has a thickness of d 2
and refractive index n 2 surrounded by n 1 and n 1 consider a general situation for both s

and p polarized light and the light is incident normally.

(Refer Slide Time: 20:51)

o .
Reflectivity at normal incidence

for bath s = and p - polarised wave

normal incidence: 8, =6,=0

n, cos y = n,cos b,

r.=
" nycosfly +n,cos b,
i R e M=

5

n+n

.

n, cos B, = n, cos 0,
T S e—
" 1y cos B, + nycos 6

-

;""“"""‘r’"“""'l.
=
-1
1
-

same amplitude reflection coeffici

D o Q ) A
! PTEL ONLIN v Maul
T KHARAGPUR p.ER'E‘ILFE'_A'li'IDEICOURSES Jartha -i\;._ljl_}mm‘]um

Physics

In that case we have theta 1 equal to theta 2 equal to 0 for normal incidence and both r s

and r p will give me this value r s equal to r p equal to this for both the polarizations

same amplitude reflection coefficient.
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Now, whether it is p or s polarized light from the left from the left interface from here,
the reflection coefficient is r 1 will be this. From the right side it is just the reverse in
terms of the sine n 2 minus n 1 by n 1 plus n 2. And therefore, we can write r 1 equal to

minus r 2 is equal to r let us suppose this value is equal to r.
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Then the reflectivity becomes mod r square and if I put in the equation of the reflectivity
then I end up with this expression. And you know that this you can rearrange this

equation to write in this form F sine square delta 2 by 1 plus F sine square delta 2.



Which is our well known energy reflection for the Fabry Perot etalon and this F which is

equal to 4 r square by 1 minus r square whole square is called the coefficient of finesse.
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This is our old result and using this expression, we can also calculate the transmittivity
that is T equal to 1 minus R which will give me 1 by 1 plus F sin square delta 2. So, these

are these are the reflection reflectivity and transmittivity for a Fabry Perot etalon whose

thickness is given n 1 n 2 are given right.
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Now, we will consider multi layers, that you have successive layers of increasing or
decreasing refractive indices. And let us suppose that the wave is incident at this
interface part of the wave will be reflected part of the wave will be transmitted from this

interface there will be reflection and so on and so forth.
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In this case because it is normal incidence so, delta j will be k 0 n j d j. For oblique
incidence delta j will be k 0 n j d j cosine theta j, j represents any intermediate layer. And
this has come from this connection which is basically the Snell’s law n j cosine theta j is

equal to n j plus 1 cosine the local connection of the refractive indices in terms of the

cosine of the angle.
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So, applying the continuity condition across each of the interfaces we can for this
particular stack of the layers of increasing or decreasing refractive indices; we can write
down this equation the electric field in the first layer will be connected to are E N plus 2
th layer where this S is a compact matrix representing the product of S1 S2 S 3 S N plus
2; which is for any general layer S 1 or S 2 we can write S j equal to 1 by tj this we have

seen and we can write the corresponding coefficient.

For oblique incidence this delta j in this case will be will be having a cosine theta j, but
for normal incidence this will be only k 0 n j d j. So, this is very simple to formulate and
this is well known matrix formulation for multi layer propagation of electromagnetic

waves.
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Now, we consider the Bragg structure, where we have a periodic structure of alternate
high and low. And, the refractive indices are connected by this to it each layer to each

alternate layer will have a connection like this. For normal incidence again we can write

this and for oblique incidence we can write in this way.
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And, if you look at this structure for Bragg structure you have alternate high n low
refractive indices. And you can represent this high as n 0 some base refractive index

modified by delta n and this is less by minus less by delta n. So, you have the refractive



indices in all the consecutive layers high and low. And if you look at the reflection, if you
plot the reflection that is energy reflection R as a function of the wavelength; which is to

represent the electromagnetic waves propagating through the structure.

Then you have a plot which is a well known plot of Bragg reflection you have side lobes.
And you will get a very strong reflection at this wavelength center wavelength for which
this lambda 0 will be equal to twice n 0, d this is again for the normal incidence of the

Bragg deflection.
(Refer Slide Time: 26:13)

o ...
Interference filters

¥ Require a high value of transmittivity
¥ over a small wavelength window I
¥ Using alternate high-low Rl structure A
v With different layer thickness as \ /\

- Ao _ 5
dny b d1 and 4ny, i dz flo

"' NPTELONLINE Ej}u-t.lﬂu ERD”.@;uuaﬂmi

IIT KHARAGPUR CERTIFICATION COURSES _
Physics

Interference filter so, this is another example, that if I choose the stacks the one which I
have shown that these are not same because in this case, all the all the stacks will have
the same thickness. So, that d by 2 represents the and the total one high and one low this
distance is d. But if we have alternate layers having different thickness, but they are same

for all the alternate layers which are given by d 1 and d 2.

So, for low refractive index region I have this thickness d 1 and for high refractive index
layer I have this thickness d 2. In that case, if I plot the wave length and the
transmittivity of the stack of the structure. Then we will see that this transmission
function will look like this; that means, you have a strong transmission at a wavelength
around this point and which is which is used for which is used for allowing for passing a

small wavelength window. And used in many experiments and applications.



So, it when we require a system a device for high value of transmittivity and that to over
a small wavelength window then, we will use this system which is called an interference
filter. Using alternate high and low refractive index structure and using this condition we
can get a strong transmission at certain small wavelength region. And this is a very
useful device for selecting a small window of wavelengths which will be used for some

application some experiment ok.
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So, today all that we have discussed is that for a thin film we have considered and we
looked at the reflection and refraction from the film. Then we wrote down the electric
field components, then device the transfer matrix to relate the electric field components
for the consecutive layers. From there we showed the principle of anti reflection coating,
an old result of Fabry Perot etalon in terms of the finesse constant for transmittivity and
for reflectivity. We also extended our discussion for multi layer structures for normal

incidence as well as for oblique incidence. Thank you.

Thank you.



