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So, now we will continue our discussion of the interface properties as regards the optical

waves for the dielectric interface. We have seen the p polarized wave and s polarized

wave,  their  properties.  The  energy  reflection  coefficient,  amplitude  reflection

coefficients, amplitude transmission coefficients, energy transmission coefficients, also

we have seen the Brewster angle normal incidence.

(Refer Slide Time: 00:51)

Now, there is an interesting aspect of this inter reflection at interface and which appears

in as a common fact and known to almost every one of us, this is what we call the total

internal reflection, under certain angle of incident condition.



(Refer Slide Time: 01:05)

So, with that background now we will we will proceed with total internal reflection and

evanescent  waves. Then we will  talk about the transmitted and reflected electric  and

magnetic field components in this particular case from where we will try to understand

whether the energy flows across the interface or along the interface. Then then we will

bring two such interfaces together to see that whether the waves can be confined between

the interfaces which will give rise to the concept of wave guiding.
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So, let us start our discussion with the picture of this total internal reflection when you

have angular or the a angle of incidence, which is equal to the critical angle then the

wave will be emerging out along the interface and if it is more than that then, there will

be  a  total  internal  reflection.  So,  this  is  a  critical  situation  when  the  reflected  the

transmitted wave will be along the interface.

So, that condition so the Snell’s law gives you n 1 sin theta 1 equal to n 2 sin theta 2 is

equal to constant which is the invariant of the structure. Now for the denser to the rarer

medium if we consider this case that is n 1 is greater than n 2, then for theta 1 equal to

theta c, you have theta c the critical angle of incidence for which you will get a grazing

angle of refraction. So, we can write for theta 1 equal to theta c equal to n 1 sin theta c

which will be equal to n 2 sin pi by 2 because this angle of refraction is now pi by 2. So,

therefore, n 1 sin theta c must be equal to n 2 under the condition of total under the

condition of critical angle of incidence.

(Refer Slide Time: 03:30)

 So, for theta 1 so this is for exactly when it is theta c the angle of incidence you have n

2, but if I increase the value of theta c, if I increase the value of theta c by a small amount

delta then; what happens? I am increasing the left hand side quantity that is theta 1 is

now greater than theta c. So, n 1 sin theta 1 this quantity is now more than n 1 sin theta c

n 1 sin theta 1 is greater than n 1 sin theta c. 



So, that is what I have written that this theta c plus delta must be greater than n 1 sin

theta c, but n 1 sin theta 1 n 1 sin theta c itself is equal to n 2. So, this quantity this

quantity must be greater than n 2, that is what I have written. So, this n 2 sin theta 2 must

be greater than n 2 because n 1 sin theta 1 is equal to n 2 sin theta 2. So, that tells you

have n 2 on either side; that means, if you remove n 2 which is a non-zero quantity sin

theta 2 must be greater than 1, but that is a situation which never happens so; that means,

sin theta c n 2 by n 1 I have used this relation. So, sin theta 2 is now greater than n 1.

(Refer Slide Time: 05:00)

So, for theta 1 greater than theta c, we have a wave for which sin theta 2 is greater than 1

unity; that means, k 2 z k 2 z this quantity equal to k 2 sin theta 2 which must be greater

than k 2 this simply means that cosine theta 2 must be purely imaginary.



(Refer Slide Time: 05:30)

So, if k 2 x is equal to k 2 cosine theta 2 as given by this picture k 2 x equal to k 2 cosine

theta 2 is imaginary. Then transmitted electric felid contains k 2 x and k 2 z this we have

to evaluate cosine theta 2, we have to evaluate to find that cosine square theta is equal to

minus sin square theta 2 minus 1 because this is 1 minus sin square theta. I have written

in this form for some particular interest that will be very clear re soon that cosine square

theta 2 will be equal to minus.

Because sin square theta 2 equals to n 1 sin square theta 1 by n 2 square this comes from

the Snell’s law. So, if I express this cosine theta 2 it should be plus minus I of this under

root of this quantity, but we have taken only the negative quantity negative value of this

root of cosine theta cosine square theta the meaning is very clear because if you take

positive root we will see that this will appear in the exponent as a positive quantity which

will grow exponentially wit H x and that is not physically admissible. So, for absorption

of this wave, we will see shortly that it is important to written this minus sign here ok. 
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So, in the transmitted field you have this k dot r is equal to k 2 cosine theta 2 x we have

seen this, and k 2 sin theta 2 z these are the x component and z component of the k

vector. So, in the transmitted field we can write the electric field of the transmitted wave

as the transmission amplitude multiplied by the electric incident electric field amplitude

and this phase factor. So, omega t minus k dot r, I have written in this form because there

is no k 2 y it is only k x and k y k z they are involved.

So, we can write this and this is also known that t s the value of t s is twice n 1 cosine

theta 1 by n 1 cosine theta 1 plus n 2 cosine theta 2 this value if we substitute for these

then cosine theta 2 will come out to be because this is the value that we have assumed

ok. So, from in this expression if I use the cosine theta 2 value here then because cosine

theta 2 itself is a imaginary this t s becomes an imaginary quantity and that adds to a

phase additional phase.
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Therefore  we  can  write  this  imaginary  quantity  for  t  s  as  t  s  equal  to  mode  of

transmission amplitude into e to the power of i alpha where alpha is the phase factor

which is  the addition phase.  So,  it  means that  the transmission amplitude coefficient

includes the phase factor so due because of transmission there is a change in the t s also

therefore,  the  transmitted  electric  field  can  be  written  in  this  form that  the  because

electric field is parallel to the interface plane and we can write that equal to y cap t s E 1

e to the power of i omega t plus alpha which is the additional phase arising out of the t s

that is the transmission amplitude coefficient.

 So, rewriting this equation by just by separating all the individual phase components that

is e to the power of i alpha, e to the power of i omega t, e to the power of i k 2 x cosine

theta and so on. We can show that this quantity all of them are positive this is the only

quantity which is negative. Now if I use negative with eta i if I use this cosine theta 2 the

value of cosine theta 2 the value of cosine theta 2 as we have already determined we

have already calculated.

So, if I use this value of i here, then i into i and minus and minus. So, it will be simply

minus e to the power of some minus of this quantity.



(Refer Slide Time: 10:10)

This is exactly what we have shown here n 2 cosine theta 2 just multiply on either side

and for this quantity if you multiply both sides by k 0; then this quantity can be written

as gamma. So, k 0 n 2 put together we write gamma with minus i of course.

Then this transmitted electric field amplitude electric  field can be all  in terms of the

phase and amplitude can be completely written in this form and if I use this gamma then

the  equation  for  the  transmitted  electric  field  can  be written  in  this  form that  is  the

transmission amplitude in terms of the electric field incident electric field the additional

phase the time varying components and this is the amplitude attenuation factor and this is

the z component there should be 1 i missing here there should be 1 i here

So, this component this quantity e to the power of i gamma x is now attached to the

amplitude; that means, in the transmitted wave decays the exponentially with x.

(Refer Slide Time: 11:35)



 

So, there is a wave after transmission from the interface that decays exponentially the

amplitude of the wave decays exponentially and that is what is called the evanescent

wave. So, it appears as the as the attenuation of the wave by a factor minus gamma there

should be 1 i here because this will add to a phase factor. 

(Refer Slide Time: 11:58)

So, by knowing that electric field the incident electric field and the transmitted electric

field we can now calculate the magnetic field components magnetic fields we have seen

related in this way this also we have seen that k x e y and k z they are the only surviving

quantities  which will  give you this  k z E y and k x E y of the z  components for z



component. So, h t you can write in terms of the characteristic impedance of the second

medium. So, transmitted magnetic field can be written in this form.

(Refer Slide Time: 12:39)

Now the same can be made out in this figure also because if you have a we are looking at

the transmitted a magnetic field amplitudes. We have a z components of them which is

positive  z  2  cosine  theta  2  which  comes  appears  here  and  you  have  you  have  a  x

component of the magnetic field which is negative. So, you have minus sin theta 2 and

then because it is in terms of the transmitted electric field. So, transmitted electric field

by the characteristic impedance we will represent this h 2 that is the magnetic field in the

transmitted wave.
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So, the transmitted field can also be written in this form because you have a cosine theta

cosine theta 2 and this cosine theta 2 for this case that is from the denser to the rarer

medium are interfaced this becomes imaginary.

(Refer Slide Time: 13:44)

And if I substitute the value of cosine theta 2 I can write in this form therefore, this h t

involves an i in the z component of the of the transmitted magnetic field so, but minus i

minus i can be written in terms of e to the power of minus i pi by 2.



So, it tells you that the z component of the magnetic field this is the x component of the

magnetic field in the transmitted wave and this is the z component of the magnetic field

in the transmitted wave z component means along the along the interface direction. So,

the component of the magnetic field which is along the interface direction is out of phase

by pi by 2 because of the attachment of this i with this amplitude of the z component of

the magnetic field with respect to this phase out of phase is with respect to E y and H x

this is H x and this is H x and it is also with respect to E y in the transmitted wave. So,

this is our interesting finding that the z component of the of the magnetic field in the

transmitted  wave  is  out  of  phase  with  respect  to  the  E  y  electric  field  and  the  x

component of the magnetic fields.

(Refer Slide Time: 15:05)

So, for the transmitted wave the components that is to describe the transmitted wave are

E y H x and H z. So, E y is we have seen can be written in this form which includes a

phase factor of alpha and H x is also includes the same phase factor alpha and all of the,

but additionally there is an there is an extra phase which is due to the z component of the

z component of the magnetic field in the transmitted wave.

So, this will make this quantity if take the real part this will make this quantity sin, but

these 2 will be still staying back as cosine.
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So, we can write E y in this form which will be if I take the real part of this of the

individual filled components we can write these as cosine theta. This will also remain

cosine theta, but this will become sin theta and there will be a phase attenuating part in

the transmitted wave this is because of the electric field attenuation.

(Refer Slide Time: 16:21)

So, let us now evaluate the power flow across the x direction. So, S x is equal to E cross

H x component we have seen now E y and H z this component will give you E y and H z

which will be equal to 0 why because E y will contain a cosine component cosine factor



whereas H z contains the sin factor. So, you know the time average over a period for sin

and cosine product will give you always 0 so; that means, there is no net power flow

along the x direction in the transmitted wave.

So, there is an evanescent wave, but the wave is moving along the interface, there is no

net energy flow out of the interface along the x direction.

(Refer Slide Time: 17:13)

So, this is an interesting finding. So, what we find that there is no power flowing along

this line, there is no power flowing along this line, but there is a power flow which is

along the z direction.

So, let us calculate the power flow at the z direction that is S z. So, we just calculate the z

component of the pointing vector and this will give you minus E y H x if you simply

open up the cross product and then take the z component, but this time the value is non-

zero and this quantity comes from that E y you know that this is a cosine factor involved

with this E yand for H x there is another cosine factor. Now the time average of the

cosine square term integrated over a period will be equal to half.

So, there is a factor half coming here and on if you simplify the product of these two,

then you will get this equation e to the power of gamma x and e to the power of gamma x

here both put together will become e to the power of minus twice gamma x the electric

field amplitude e 1 e 1 in both the places will make it e 1 square t s mod and t s mod will



make it t s mod square and all other things are quite evident from here. So, we can see

that there is a net power flow along the interface outside the outside the interface along

the along the z direction the direction along which it is moving.

 So,  this  evanescent  field  have  the  characteristic  nature  that  there  is  no  the  field  is

exponentially decaying as you move away from the as you move away from the interface

along the x direction, but there is no net power flow there is no net energy flow out of the

interface along this direction, but the energy flows only along the interface only along

the z direction along these direction.

(Refer Slide Time: 19:33)

 So, in the reflected field for the completeness, we have this phase which will involve k 3

z and k 3 x. So, that is why k dot r 1 of them is positive z, but x component is negative.

So, we write this k hat dot r in this form.
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And that gives you the reflected wave amplitude of the electric field as like this and this

if you just open up the bracket, you can write the individual components of the phase due

to x due to time and due to z.

(Refer Slide Time: 20:10)

And in this way you can complete all the components of the electric field and magnetic

field in the reflected wave, E y will be this we have seen in the reflected wave.

Because it is simply by a factor of r s modified the incident electric field and for H x you

have seen this one and for H z, this again come from here you have this h field you have



a negative value of the x component of the magnetic field and the negative value of the z

component of the magnetic field. That is why your both H x and h z both of them are

negative  and it  appears  with  the  phase  factor  of  the  electric  field  multiplied  by  the

reflection amplitude coefficient in terms of the incident electric field amplitudes.

So,  these  are  complete  e  expressions  for  E y  H x and H z  which  constitutes  this  s

polarized wave or the t polarization wave at the interface. So, this is complete.

(Refer Slide Time: 21:26)

And now for the lower medium you have you can see that this beta, I write for k 0 n 1 sin

theta 1 for the lower medium k 1 z; k 1 z is this component k 1 z this quantity. So, that is

a z component of the propagation vector which can be written as k 0 n 1 sin theta 1 and I

call this quantity as beta which is the z component of the propagation vector and the x

component of the propagation vector k 1 x this is for the incident wave k 1 x equals to k

1 cosine theta equal to k 0 n 1 cosine theta this.

So, put together if I use this k 1 n 1 cosine theta you can write this equation and just by

translating this k 0 you multiply both side bracketed the k 0 square inside. Then you can

write k 0 square minus beta square which will be the x component of the propagation

constant for the lower medium e 1 when moving up that is for this field for this optical

field we have e 1 equals to e 0 e to the power of i omega t minus beta z minus k x. These

are the factor which are appearing you can look back this electric field component you

have this k 1 x into this cosine theta and k 1 z into sin theta 1.



So, I have written for k 1 x k 1 x for this I have written this quantity that is kappa for k 1

x. I have written k 1 x kappa into x and for the z component that is the second part of this

equation i k 1 sin theta 1 z I have written beta. So, using this kappa and beta notation

which are the x and z components of the propagation vectors, I can write this e 1 equals

to e 0 e to the power of i omega t minus beta z minus kappa x, for the wave which is

moving up towards. The interface and for the wave which is coming down from the

interface  the  reflected  wave  everything  remains  same  expect  that  this  is  now  the

travelling in the negative x direction effectively the propagation constant is along the

negative x direction.

So, k 3 x is now minus k 1 x cosine theta which is the same, but with a negative sign k 1

x and k 3 x the magnitudes are the same, but it contains a negative sign that is why the

kappa has now become plus kappa into x. So, these are the nit  representation of the

optical waves when they are moving up and moving down.

(Refer Slide Time: 24:41)

So, now with this knowledge we will bring in 2 such interfaces that is there is 1 interface

which is binding this the upper and lower media essentially this n 1 is higher refractive

index medium n 2 is lower. Similarly here also they are identical interfaces I assumed

that and the medium inside is continuous. So, I place my coordinate axis in this along the

axis and if the reflection takes place here I know that x for the wave incident at the upper



interface. I can write this e 1 equals to this and for the wave which is incident at the

lower interface I can write this equation.

This we have seen just now here I can write in this form both of them I assume that have

the same amplitude of the electric fields. Therefore, and this is also known we have used

this relation k equal to kappa equals to this and beta equals to this is the x component of

the propagation vector and this is the z component of the propagation vector.

(Refer Slide Time: 25:54)

So, these 2 waves now on super position and the magnetic field components are in this

case will be given by this equation.
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Now the total electric field is the super position of these 2 waves that is e 1 and e two.

So, if I take the super position very simple manipulations shows that this can be written

in terms of e to the power of plus i kappa x plus e to the power of there should be 1

minus sign here minus i kappa x. So, this quantity is nothing, but the cosine of kappa x.

So, this quantity is a. So, you can see that within the within the medium of a refractive

index n 1 which is the denser medium the wave that varies along the x direction with a

function as a nature as k cosine of kappa x and this is the z component of the propagation

vector which adds to phase.

So, you can see that there is a sinusoidal variation of the power the cosine variation of

the power within the medium bound by 2 interfaces which gives you that the wave is

confined here and you have a  evanescent  tail  evanescent  wave which  is  outside the

medium that also we have seen. So, if we look at this structure and if we look at these

superposed waves of the 2 waves which are simultaneously being reflected from the 2

interfaces, they will add up and there are many more waves. So, put together we can get

an equation for the for the electric field which is a cosine function and that tells you that

the wave will  be confined within these and a part  of the wave will  be evanescently

decaying along these.
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So, this gives you the concept of wave guiding. So, outside the 2 interfaces, you have a

decaying field and within the medium that is within the high refractive index medium

you have a wave which is a cosine variation depending on the phase. It could be a sin

variation or it could be a super position of sin and cosine variation that all depends on the

waves which are the phase of  the waves which are reflected  and from this and this

interface.

Let us suppose the wave which is reflected from here and the wave which is reflected

from here they are out of phase by pi by 2, then this cosine theta cosine of kappa x will

now become sin of kappa x and if since all such wave are possible. So, it will be in

generally a super position of k cosine kappa x a cosine kappa x plus b sin kappa x. So,

inside you will get all possible variation of this is what we call the mode of the structure.

So,  the  above the  upper  interface  you have  an  electric  field  which  is  given by this

because if x is positive and the field is exponentially decaying and below the interface x

is negative the field is exponentially decaying. So, we have these 2 expressions for these

2 regions that is the upper region and the lower region and for the in between we have

that equation.
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So, if I put all the all the electric field components across the region, we can write E y

equal to a cosine, that is for this intermediate region that is for the region in which the

wave is mostly confined and if B e to the power of minus kappa x gamma x will be for

this region of course. We need a coordinate transfer translation for this because it should

take x equal to 0 here, then only you can represent by this equation. Similarly if you take

x equals to 0, then only you can represent by these,  but essentially  the field has the

amplitude B e and B e they will be taking care of how much part of this field is already

decayed.

So, this gives you a very clear understanding of how an optical wave can be confined by

successive reflections from the 2 interfaces whether they are identical interface or non

identical that will only effect the kind of wave that is propagating through the medium

and this gives you the concept of how a wave can be guided by a structure which has at

least 2 interfaces. And this the same expressions will also appear when we will discuss

the slab wave guide slab optical wave guides the basic optical wave guides, but we will

derive this equation from the wave equation with a more rigorous analysis and then we

will continue with other aspects of the discussions.
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 So,  in  this  discussion  we  have  mainly  focused  on  the  total  internal  reflection  and

evanescent  wave  that  moves  with  the  wave  along  the  interface  in  the  direction  of

propagation  and the transmitted  and reflected  components  all  the components  of  the

electric field and magnetic field in details with complete picture.

Then we have brought in 2 such interface structures together, we evaluated the field

which will be confined within the 2 interfaces and also the field which will be outside the

interfaces  and all  of  them put  together  will  give  you a  wave which  will  be  guided

through the structure by the 2 interfaces.

So, that gives rise to the concept of how the wave optical waves can be guided through

such interfaces. We will continue our discussion with these guided wave optical waves in

the next occasions.

Thank you.


