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Hello and welcome back.
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So, we in the last class we derived this Lagrangian which is T minus V for a system, and

then we got series of equations which was of the form d dt of del L del q k dot minus del

L del q k equal to 0. So this means; the Lagrangian L in general is a function of q q dot

and time. I should write function of q’s q dots and time. And this is a general form I

mean this is 1 form of Lagrange’s equation and there will be n number of such equations.

So, the index k actually runs from 1 to n, so there will be n such equations n being the

number of independent  parameters  required so that  is  3  n minus k.  That  means,  the

number of degrees of freedom of the; I mean available degree of freedom of the system

that is degree of freedom minus constraint. So we have such k number of equations.

Now, we at the end if you recall we I said something like, if Lagrangian does not include

one of the coordinate explicitly that so we have a situation. For example, if I out of this

different values different q q k’s. If I take one particular q i which is not included in the

Lagrangian explicitly; the example I gave was when we wrote the Lagrangian for the



central orbit it did not include theta. So theta was included in terms of I mean theta dot

was a part of the Lagrangian, but theta was not a explicitly included in to the system. 

So,  in  that  case  what  happens  is  if  that  particular  parameter  in  this  case  q  i  is  not

explicitly involved in to the system; sorry I mean explicitly present in the Lagrangian

then this gives you del L del q i is equal to 0, for this particular Lagrangian I mean sorry

for this particular coordinate q i and this leads to the fact that del L del q i dot is equal to

a constant. And this constant is called and this quantity del L del q i is corresponding

generalized momentum. So far we have defined generalized coordinates we have defined

generalized velocities we have defined generalized forces.

So,  no  harm  in  defining  a  new  generalized  parameter  which  is  the  generalized

momentum which is equal to this so these terms are essentially a generalized momentum.

So, now, it makes little more sense because if this is a first just a minute p I right. So, this

is the derivative of the time derivative of the generalized momentum just like we have in

Newtonian  mechanics,  Newtonian  equation  of  motion  and  then  we  have  something

which is on the other side right.

So, exactly I mean something very similar to what we have in Newtonian mechanics

where we have I mean rather p dot is equal to F an equation of this form right. So, it is

somehow not very different and as I am saying it over and over again that this is just a

another way of getting this type of equation which will sorry Lagrangian so far what we

have learned is another way of getting same set of equation in a slightly different way.

Now we can have situations where we have frictional forces present or rather dissipative

forces present in the system and sometimes we can have a situation in which we do not

know.  We  cannot  really  remove  the  frictional  forces  a  priori  especially  it  happens

especially for dissipative forces. 

So, now, we will learn how to tackle these 2 types of situation using this Lagrangian

formulation right. So, the first one we will take up the relatively easy case I mean both

are not very difficult, but we will just out of that two, I would say the first 1 is this case

of dissipative force sorry case of what you call the viscous damping for example. So, in

viscous damping what we have seen so far is the force is  a function of velocity  the

viscous force. 
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If you remember the viscous drag was written has a general form minus k v, so minus

means it is working opposite to the velocity v and k is the co coefficient of the viscous

drag and it is somehow related to the viscous forces present viscosity of the system and

other forces present or other effects related to viscosity that we have seen. Now this thing

this is a force so this is the viscous force or drag force we can write it as f d which is this.

In Lagrangian, if you see that Lagrangian has a dimension of energy now question is can

we define an energy an define a function which has a dimension of a energy so that can

be added to the Lagrangian the answer is yes we can for specially for forces which are or

dissipative  forces  which  are  dependent  on  velocity  and  example  would  be  a  good

example  would  be  viscous  force  we  can  do  that  we  can  write  something  called  a

Rayleigh function. 

Rayleigh function which has the general form it is written in using this curly f equal to

half k or rather k j q dot j right. In this case it will be simply k times v q dot is equal to

this is a q dot here. So, in the case of viscous drag it will be simply half k v square right.

So,  if  we add  this  with  the  Lagrangian  we can  do that  we can  either  add it  to  the

Lagrangian or we can take derivative or a gradient of this function as a with respect to

velocity which will have this form and we can put this on the right hand side of this

equation. So my equation which was so keep this generalized momentum in mind we

will come back to this in a moment here we are.
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So, what we need to do is actually, so it should be we have to add this particular term

with this equation so the total equation we will write as plus del f del q k dot is equal to 0

so I was bit confused whether I should put it put a plus sign or a minus sign here. Now so

this is how we can do and if we do that for example, if we if we are trying to describe the

motion  of a  system falling  through a viscous medium like  we did during our initial

discussion of you know motion under resistive medium we can might as well use this

Rayleigh function to get the final equation motion. And without surprise we will see that

we will get back this 2 beta v term or right 2 beta v term which will give you a damping

of the velocity or rather it will be a k v term simple minus k v term which will give you a

damping of the velocity right so this is one.

The second one is sometimes we face situations where, even if we want we do not have

the full knowledge of the constraint forces or sometimes the constraint forces are also

associated with some dissipative force I mean certain dissipative forces can be written in

to this particular form, but there are other types of dissipative forces which cannot be

taken  in  to  this  particular  form,  but  which  are  might  be  present  in  the  system one

example is the frictional force for example. 

Frictional force let us take an example of ball or a cylinder is rolling on this platform so

if there is no friction it just comes down, but because there is a frictional force present

here it rolls. Now if this rolling takes place, how do we consider how do we include this



frictional forces which are causing it to roll in to the equation. The answer is we can

always find a relation which is somehow which will be something relation which is very

similar to the constraint condition and we can include that in to the Lagrangian. 

So, just to give you a brief overview of what talking about in this case see if it is rolling

without slipping first of all how many parameters do you need in order to describe its

motion it is an 1 d motion right. So, in 1 d motion in principle we can simply take you

know some reference point and take the distance x of the center of mass and that should

be sufficient, but here we have rolling and that is when there is no rolling in the system.

But when we have rolling in the system what happens is we also need to define a angular

velocity so we have to take some reference line. 

Let us say this we take a line which joins the center of this cylinder with the point of

contact and this is our reference line we took we have to take you know any point on the

rim and we have to monitored this angle let us call it theta. So, I mean it could be this

point it could be any other point, but it has to be a fixed point and this theta will give you

the angular velocity omega in terms of omega equal to theta dot right. 

So,  when it  is  rolling it  has an angular  velocity  and if  the radius is  a radius  of this

cylinder is a or r whichever you prefer let us call it r then we know that x equal to r theta

dot this relation has to hold the linear velocity or rather x dot is equal to r theta dot. So,

the linear velocity and the angular velocity will be connected in terms of a equation.

Now this  is  a  case of  non holonomic  constraint,  why it  is  non holonomic?  Because

although, we can put it in terms of a differential equation again now if I start you know

writing from here so I can this is d x dt and this is r d theta dt I can might as well get rid

of this dt and write it in the differential I mean the virtual displacement form this will

give you delta x minus r delta theta equal to 0 right.

Now this  is  some sort  of  an  constraint  condition  whatever  may  be  the  motion  this

condition has to be full  filled and this  is this condition is  there because of frictional

forces. So, this is some kind of a constraint condition, but for a holonomic system the

constraint equations are in proper form I mean this is a derivative form equation right

but, in for holonomic system we have seen that constraint equations are given in terms of

this type of equation. Please remember that this phi is a function of q 1 q 2 up to q n not

that derivatives, but here we are getting a relation which is terms of the derivatives of the



coordinates generalized coordinates x and theta. So, this is not a holonomic constraint it

is a non holonomic constraint which can still be put in form of an equation. 

If you recall during our discussion of the constraints I said there are certain classes of

non holonomic constraints which can still be put in form of an equation this is 1 such

example another example would be if I take disc which is rolling on a plane. Let us say I

do not know may be so this is the this is the plane or let us say my palm is the plane and

then disc is rotating I mean rolling on this. 

So, what we need to do is we need to define its velocity v once again there will be a theta

and there will be another angle phi which will be you know if my x axis goes like this

and y axis goes like this. So, this is this angle there should be an angle which gives you

the deviation of you know the disc plane corresponding to the axis. So, the situation is

something like this I hope you have noted this already.
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So, let us say this is my one axis this is my other axis in that plane and my disc is rolling,

rolling in this particular direction so once again we have to take 1 theta there has to be a

v velocity v, so and there has to be some angle phi which or phi or psi whichever which

defines the direction of the disc the which basically defines the direction of the disc. So,

this 3 if we can get v which is equal to let us call it x dot no vector needed so if we have

x dot theta dot and phi then we know all about the system we will know it, but only after

we solve the problem completely. 



Here also we will know what are the values of x and theta and of course they are related,

but this will come only after I mean we can get an equation with relation between r and

theta. And basically we can get a relation in terms of proper values only after we solve

the problem here also we can break down the velocity vectors, where velocity vector as

if v cos theta which will be the x component of this let us say this is x and this is y and v

sin theta will be the y component of it and I can might as well write this as and this v

velocity v is nothing, but sorry that is what the mistake was. 

So v is once again if this is your a, so this is your a right sorry again this will be my phi,

phi, phi is the angle between the plane of the disc and the direct I mean the direction of

the velocity v and the axis x axis so your v will be a phi dot right. So, if you replace it

with a phi dot we get two relations I am sorry I just missed I mean mixed up between

theta and phi so we have a phi dot sorry a theta dot once again sorry. 

So, we have a theta dot cos phi equal to x dot and a theta dot sin phi equal to y dot so

these two relations once again it cannot be taken in to a non derivative form unless and

until you solve the problem completely just like we have here. So these are examples of

non holonomic case systems and sometimes what happens is you cannot really even if

you have an idea of the forces of constraint you cannot remove them a priory before you

solve the problem it might happen.

So, the catch is we can always get to a situation which will lead to a I mean which will

lead to an additional constraint equation which has to be taken in to account after we

write the Lagrangian. So, it could be a differential form or even if we have some time we

have a situation where we have a proper holonomic constraint which cannot be removed

a  priory  for  such situation  we once  again  have  to  use  the  Lagrange’s  undetermined

multiplier. 

So, the fundamentals are exactly same what we did well when we derived Lagrange’s

equation of first kind. So, I am not repeating that the trick so basically from here we have

to write d phi equal to 0 equal to sum over sorry d phi equal to 0 equal to del phi del q k

delta q k and this is for the 1. 

If there is a 1 constraint equation and if there are many constraint equations for each of

them  we  have  to  write  such  equation  each  of  them  has  to  be  multiplied  with  the

Lagrange’s undetermined multiplier and then a sum has to run over alpha and each of



them has to be added individually to this equations. So, the final form of equation will be

we will take up examples do not worry about it we will take up examples.

(Refer Slide Time: 20:06)

So,  the  final  form  of  equation  once  again  will  be  this  equation  for  one  particular

parameter this will be the equation which has to be added up with a term which is sorry

sum over alpha lambda alpha del phi alpha del q k right. Now in case of constraint where

we have a situation like this what do we do? We break it in to for example, here there are

2  generalized  coordinates;  let  us  assume  that  phi  is  a  fixed  angle.  So,  we  have  2

generalized coordinate theta and x and so we can bring it to the form that delta x minus a

delta theta cos phi equal to 0. So, this will be the form of one constraint equations so

there will be 2 constraint equations, but let us take look at it individually, ok

So, now what we can do is we can write any constraint equation in a general form that it

will be sum over k a L k delta q k in this case we have 2 generalized coordinates x and

theta. So, correspondingly for x and for theta we have a x is equal to 1 a theta is equal to

minus a cos phi right and this is if you now try to correlate between this. And this it can

be I mean we can I can tell you that del phi del x is equal to 1 and del phi del theta is

equal to minus a cos phi. 

Similarly, we can have a second equation so this is phi 1 and phi 1. Similarly, we can

write an equation this is the first equations so this is equal to phi 1. And there is a second

equation which will give you same set of parameters for phi 2 and we can add them up



and get an equation. So, this is right now what we are looking at here is the most general

form of  Lagrange  equation  the  first  2  terms  are  there  for  any  a  properly  behaving

holonomic systems. 

The second third term is there because there is a viscous dissipation which can be written

in form of a velocity dependent function called the Rayleigh function and if there are

some additional constraints which cannot be taken in to account in terms of or additional

dissipative force which cannot be taken in to account in terms of this Rayleigh function

then we can write them in form of this part I mean in form of Lagrange’s undetermined

multiplier and include them. So, we have in this using this Lagrangian we can solve in

principle we can solve any problems. 

So, now what we are going to do is we will take up look up some examples and try to see

how to use this Lagrangian we will take up cases where we have Rayleigh function in a

system or dissipative system we will  take up a case where we have to use this form

formalism. So, we will do that, but before that before we start doing that I will just want

to remind you about one our discussion on symmetric top. So, I will just erase this for

now.
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If you recall the kinetic energy and potential energy functions; I will just write it directly

from this book whatever so t was given by half I 1 theta dot square plus phi dot square

sin square theta plus half I 3 psi dot plus phi dot cos theta whole square that was our t for



a symmetric term and our v was m g L minus m g L no sorry this is simply m g L or h we

used L cos theta. So, where phi theta and psi these are the Euler angles right. 

So, now if we form the Lagrangian what we have to do is we simply have to take write L

here and we have to take minus m g L cos theta and this 3 Euler angles we can treat them

as 3 generalized coordinates right. So, if you recall rigid body dynamics with 1 point

fixed needs 3 degrees of freedom has 3 degrees of freedom I mean 3 degrees of freedom

are taken away moment we fixed one point of it. So, this 3 coordinates can be phi theta

and psi.

Now, if we examine this Lagrangian closely what do we see we see that out of this 3 phi

and psi these two are cyclic coordinates, cyclic means which is not explicitly present in

the Hamiltonian, theta we can see that there is sin square theta here there is cos theta here

cos theta whole square there is cos theta here. So, theta at least in more than one places

theta is present, but phi is it present here no phi is not present phi dot is there phi dot is

here, similarly for psi psi dot is here, but there is no trace of psi. So, phi and psi they are

cyclic coordinates.

So, in the beginning of the lecture and also in the previous class the theorem the what I

taught  you  by  going  by  that  the  momentum  corresponding  to  phi  and  psi  will  be

conserved right. So, we have p phi will be equal to 0 or rather p phi will be equal to

constant let us call this constant k and there will be a p psi equal to a constant. Let us call

it A.
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Now, if  we try to calculate  the momentum what do we see del  L del q k dot is the

momentum p k so going by this p phi will be equal to or let us start with p psi that will be

slightly easier p psi will be del L del del psi dot which will be equal to only 1 term will

contribute because rest of the terms does not have psi dot in it so it is a partial derivative.

So, only this term will contribute it will be half I 3 2; will come it will be psi dot plus phi

dot cos theta 2, 2 will cancel out which will have taken equal to A you wrote it the same

expression of A which we have derived during our discussion.

And it came out the same constant came out from the third Euler equation, if you recall

similarly  so  we  immediately  identify  that  we  see  we  have  3  constants  during  the

discussion of symmetric top one is the total energy which will be a summation of this

and that then there was constant called A which was exactly that there is an I 3 extra

here, but we can always do with one constant quantity I mean we can slightly manipulate

1 constant quantity, but at least this part is the same.

Now for the third constant  k it  was what was it,  it  was the z  component  from start

looking from space set of axis it was the z component of the total angular momentum of

the symmetric term. Our logic was because there is no component of torque along the z

direction space z direction the z direction of I mean space z direction component of the

total angular momentum will be constant. 



So, we took a projection of this total angular momentum in the space z direction and

found out there was a constant k now we will do this little trick here I mean little bit of

calculation here p phi which p equal which will be equal to del L del phi dot now which

one has phi dot this one and this one. So, it will be a slightly bigger calculation if you

execute that let us do it at least 1 step we can do. So, this term will not contribute this

term will contribute it will be I 1 sin square theta it will be 2 will cancel out phi dot plus

other term this  will  contribute so it  will  be I 3 psi  dot plus phi dot cos theta  whole

multiplied by a cos theta. 

Now you please open your previous lectures video lectures or you if you have already

taken notes please check the note you will find out this is exactly the expression of k we

have derived in the class. So, the 2 conserved quantities which we had we had our own

logic  for  taking  it  one  came out  from the  third  Euler  equation  the  other  one  was  a

momentum total angular momentum component along the space z direction these two are

nothing but 2 conjugate momentums of 2 Euler angles which will be constant because

the Lagrangian is not explicit function of this Euler angles. 

So basically I would say these are two momentum corresponding to 2 cyclic coordinates

of the system so I just wanted to show this to give you an idea of what we have done

previously with symmetric term can from here what we did essentially we wrote the total

energy instead of L we wrote the total energy e we put a plus sign here right. And then

we  started  manipulating  this  equation  by  applying  this  constraint  so  pure  algebraic

manipulation to bring that in the particular form. So, we can might as well have done this

same thing using Lagrangian formulation that way we would have avoided all the Euler’s

you know we did not have to write any of the Euler’s equation in order to do that all we

need to do or we had to do was to write the energy expression in terms of Euler angles,

anyway.

So, this is one thing I wanted to show you then rest will be for the next lecture. We will

be solving mostly problems.

Till then thank you.


