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So,  we  are  back  here  and  we  are  discussing  principle  moment  of  inertia  right.  So,

principle moments of inertia essentially are the Eigen values of this particular tensorial

representation of moments of inertia right. So, what are the advantages of finding out

principle moments of inertia we will see later, but before that we will just keep it in mind

that what do we need to. What is the take back message from this, this discussion that the

moment of inertia can be represented in this tensorial form number one.

Number 2 is any tensor in any real symmetric tensor can be. So, there is a theorem which

I am, which can be proved mathematically. I am not doing it, but you have to trust me

that  any  real  symmetric  matrix  can  be  taken  into  this  diagonal  form  by  a  suitable

similarity transformation, where the diagonal elements are the Eigen values.

So, similarly following the same line, because its a real symmetric tensor, it can also be

taken into this diagonal form, where the diagonal elements are the principle moments of

inertia, which are the Eigen values of this inertia tensor. And in this particular frame, if I

write this equation,  we immediately see that if I have Eigen. Sorry if I have angular



velocity in along 1 of this principle direction principle coordinates. So, that along if I

have angular velocity along, Let us say the first axis, then we have moment of inertia

only along the first axis. We can also write 1, 2, 3 here, right, and similarly for second

axis and third axis. So, this is what we learned from this right.

Now, let us deviate slightly from this discussion of vectors and tensors. So, these are the

things we need to keep in mind, and also 1 more thing, this rotational matrix what we

have derived here is  nothing,  but  the combination of the orthonormal Eigen vectors.

When we put together the orthonormal Eigen vectors, we get lambda 1 lambda 2 and

lambda 3.

So, this is not a result which is limited to the discussion of classical mechanics by the

way this is a, this is the similar, in a similar manner, we can diagonalize and Hamiltonian

in quantum mechanics right, or any operator in quantum mechanics for example, right.

So, this is a procedure we generally follow. So, any diagonalization of a tensor tensorial

quantity in general and n in an n dimensional space, n could be 3 and could be any higher

dimension we follow the same procedure.

And, but only thing is some of the Eigen value, I mean some of the tensors, whether it is,

whether it can be brought into a diagonal form or not, that it depends on many other

condition,  but  when we are  discussing  moments  of  inertia,  and later  on  we will  be

discussing small oscillation. There also we will be dealing with real symmetric tensor, if

the tensor is real and symmetric, then we are always good, then we can always find a

suitable frame of reference, which where the tensor becomes diagonal.

Physically what it means, I will just try to draw a picture and give you an idea.
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Let us assume we have a cylinder, let us draw it in a slightly different way. This is our

cylinder.  Now  typically  what  happens  is,  this  principle  coordinates  especially  for

moments, when we are discussing moments of inertia,  which is a property associated

with  the  distribution  of  mass,  principle  moments  of  inertia  in  most  of  the  cases  are

related to the symmetry of the object.

So, let us look at this example, let us say this is the initial coordinate system, we have x

and y z. Here we are talking about the frame which is, let us say we have this axis. So,

this will not work. Just give me a second, this will not work, this will not work; again.

Also keep in mind that moment of inertia tensor depends a lot on the origin, if I shift my

origin my moment of inertia tensor will change.

So, let us say at the bottom or in the middle, I have a point; that is the center of this. By

symmetry I can always say that, this will be the center of mass, I have a axis system

which goes through the center of mass, but which is tilted, which is not following the

symmetry of this object. Now if I; and it is a cylinder with some uniform density rho.

Now, if I calculate the moments of inertia of this particular cylinder in this axis system, I

can assure you that I will get all the components Ixx, Ixy, Iz, Ixz. Actually we need not

write the lower half itself, because I will tell you why, because it is a real symmetric

tensor. So, this half and this half will be identical.



So, what we can do is, for real symmetric tensor, we can simply write upper half and

lower half will be identical to the upper half. So, we can write essentially 1, 2, 3, 4, 5, 6,

6 elements. So, 6 elements is sufficient. We do not have to write all 9. Now if I start

rotating this coordinate system, the. Now what happens is, moment we start rotating the

coordinate system, every time we are deviating, let us say slightly or do not have to be

slightly, let us say I go to a coordinate system which is this. So, this is my new x, this is

my new y, and this is my new z.

So, what will happen, this tensor, the values will be changing, definitely this values will

be changing for sure, because every time we are moving, this coordinate keeping this

point intact, that is a very important thing. You have to keep in mind, this point should

not  change,  I  am just  rotating  this  by  some angle,  some angle  theta  right,  this  will

change.

Now, finally,  if  I  go to a  coordinate  system, where the z runs  along the axis of the

cylinder, and I have an x in this direction, and y in that direction, what will happen. Just

by the symmetry of this problem, I can tell you that in this particular, this blue frame of

reference, this tensor will take this particular form. So, I 3 will be Iz in this case, and also

I can tell you something, because it is a uniform, the density is uniform, and it is a proper

cylinder. This 2 will be I 1 and I 1. So, I 1 and I 2 will be equal.

So, I am not writing I 2 here, because I 1 and I 2 will be equal, we can just call it Ix Ix or

what, what is more convenient is, we just call it I 1, I 1 and I 2, this I can just I, I can tell

you just by looking at the symmetry of the system. If I take a bottle for example, which

has a cylindrical symmetry I can immediately tell you that.

If I take an axis which runs, where the z, if I take an axis system, where does that axis

runs, through the axis of this bottle, that will be 1 axis of symmetry, and I can choose x

and y arbitrarily, because we have spherical. Sorry cylindrical symmetry in this direction,

does not matter where I choose it, I just need 2 perpendicular axis, and once z axis that

runs along the bottle that will be the symmetric axis.

So, typically for moment of inertia, because it is a property which is strongly dependent

on the mass distribution of the system, the symmetry; the geometrical symmetry axis are

the principle moments of inertia axis, but if, but typically, I mean typically that might not



be the case we can have;  for example,  I  gave you the example  of resistivity  tensor,

resistivity tensor of this, this so called imaginary metallic block.

Now, if it is a proper like crystalline cut, what I mean is, if I take a piece of material and

start cutting it by the cleavage planes. Cleavage planes are the planes which follows the

crystalline symmetry, then the real x axis, the physical x axis might coincide with the x

axis, where which is also an axis of symmetry, and then I might have for some physical

property, I might have that x axis as a principle axis.

But  typically  when  I  am  talking  about  physical,  my  other  physical  properties  then

moment of inertia, then we might not have geometrical symmetry axis, and the principle

axis  coinciding,  but  for  moments  of  inertia,  because  it  is  a  physical  property  which

depends strongly on mass distribution, and some. I mean in mass distribution al1. So, it

for uniform bodies, typically the symmetry axis is the principle axis, right.

Now, we can also classify systems depending on the symmetry of it, as I said any how

we do not need this anymore. As I said we can always have systems, we can always

diagonalize  the  moments  of  inertia  tensor;  always  there  will  be  definitely  some

orientation along which the moment of inertia has to be delivered. So, we can always

find I 1 and I 2 and I 3 for any object.

But please again keep in mind that moment we changed the origin, your I 1, I 2, I 3 will

also be changing right. Even here if I am shifting my origin from here to here or some

arbitrary position, even along this axis my I 1 I 2 I mean I 1 I 1 and I 2. These values

might change, not might definitely it will change, it has to change right. So, whenever we

are talking about principle axis, we have to, have a fixed point along which is a fixed

point I mean. So, the rigid body is rotating keeping 1 fixed point in it and that fixed point

is our origin, all the time please keep that in mind.

Now, for a system if we have I 1 equal to I 2 equal to I 3, then we call it a spherical top.

Spherical top that typically happens for sphere, only sphere or some system which has

this very strong physical symmetry; for example, cube, cube is also a system, if I take a

cube, uniform cube has to be uniform, and if I set my x, y, z such that its exactly in the

middle of the sphere.



So, all 3 moments of principle moments of inertia, just by observing the symmetry of the

system, I can tell you if I set the origin at the center; that means, origin is my fixed. I

mean the center of it is in the fixed point, along which it is rotating then and my. So,

sorry actually the x axis has to run exactly through this corner, if that happens. Sorry not

this corner.

So, it might,  it  has to run exactly  through the middle of this  phase. Similarly y axis

middle of this phase. So, in that case this will happen. So, this is also an example of

spherical top, only if it is the extremely symmetric object. Second example is, I 1 is equal

to I 2 not equal to I 3, then its which is an example we are dealing with here, which is a

cylinder uniform cylinder, where the fixed point is anywhere on this axis.

It could be here of course, changing this fixed point will give you different values of I 1

and I 2 and I mean I 1 and I 3, I 1 and I 2 are exactly equal, but the just by following the

symmetry of the object I can tell you, does not matter if we are staying at this point on

the axis, or that point will definitely have I 1 equal to I 2 which is different from I 1

equal to I 2 which will be different from I 3.

So, this set of systems is called the symmetric top, and if I have a system which is very

regular in shape, where I 1 is not equal to I 3, not equal to I 3, we call it an asymmetric

top, symmetric top, spherical top, symmetric top and asymmetric top. So, motion of this

we will be discussing shortly; asymmetric top actually not much to discuss symmetric

top  a  spherical  top  also.  It  is  too  easy  to  understand  the  motion  everywhere,  it  is

symmetric anyway.

This  is  the  portion,  this  is  the  topic  symmetric  top  on  which  we  have  to  spend  a

considerable amount of time. There will be 2 types of motion discussed; 1 is top free

motion, 1 is with top motion. So, this there will be long calculations in this chapter, this

particular topic. So, be prepared for it, before we go into all this, we need to quickly

discuss few other things; 1 is the, theorems 1 is the parallel axis theorem, and next will

be parallel axis theorem.
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Let us assume we have this arbitrary rigid body, and let us say we have 1 axis of rotation

given by some direction n running through this, yeah this is with this origin right o, and

let us assume this is the center of mass of the system right, and let us assume that another

axis which is exactly parallel to n parallel to this axis, also runs through the center of

mass.

Now, we want to see, is there any relation between the moments of inertia is calculated

around this axis, and that axis for that. Let us take 1 point, which has a position vector ri

and ri prime, right, and this is r, this construction looks familiar, right. We did that when

we discussed general. We generally discuss the motion of a system of particle. So, r i is

equal to r plus ri prime.

So, I which is the moment of inertia measured around this axis, which will be given by

sum over i. Again I am not writing the sum, because it is we are following Einstein

summation convention, di is the distance right, which is ri cross n square right, breaking

it into this by putting ri equal to this. So, it will be r plus ri prime cross n capped mi r

cross n capped.

Now, r cross n capped will be the distance d between this axis, and center of mass right.

So, I am just substituting. Sorry there will be a square here, right. So, my first term will

be r cross n capped square, which will be D square. Sorry this small d square and second

term will be mi r, this one will be the distance.



So, second term will be ri prime cross n whole square, which will be the distance of this

particular mass from this axis, which goes through center of mass. So, let us call it di

prime. So, this will be simply di right di prime square, and there will be an additional

term which will be 2. So, it will be 2 r right mi r cross n into dot ri prime cross, right. So,

there will be 3 terms.

Now, what we are going to do is, once again we are simply take this mi inside. I think

you all understand by now, what we have to do, and this term is again what mi ri dashed,

which is ri ri prime, which is the moment measured about center of mass, and for a

system of particle we have already shown that this moment uniformly vanishes. So, the

third term will not contribute anything. So, the third term is equal to 0.

So, I will be, and again what is the second term. Second term is the moment of inertia

measured around this particular axis, which is going through center of mass right. So,

what we can do is, we can simply call it I c center of moment of inertia, measured around

an axis around the parallel axis, which goes through center of mass plus. What is this

sum of there is a, there is a sum over I implemented on the whole thing. Now sum over I

means it is the total mass. So, it will be m d square, right.

So, that gives us the. So, called parallel axis theorem, which says I about any arbitrary

axis is the moment of inertia, about any arbitrary axis is a combination of moment of

inertia measured through an axis, which is parallel to that axis, what going to center of

mass plus the mass times distance square, between that to these 2 sets of axis basically

the perpendicular distance between these 2 axes, right.

So, this is our theorem, which is, and now we move to the next theorem. We do not, we

have to remove this part  here, move next theorem is the perpendicular  axis theorem.

perpendicular axis theorem says, what let us say we have a laminar object, which is lying

in the x and y plane.

And. So, we can measure the moment of inertia around x, around x axis around y axis

and around z axis, then we can write Izz which is the moment of inertia measured around

z axis, which will be Ixx plus I yy. I am not proving it. So, simple you can find it in any

textbook. You can also do it yourself. Please remember you just remember that the mass

is in the xy plane, there is no mass distribution along the z axis.



Just put that into this, into I mean write an expression for Ixx and Iyy, put it into. I mean

sum it up, and then you will immediately get Izz. So, I am not proving it for you. Now

coming back to this parallel axis theorem, using this if I go back to our earlier example

of a cylinder.
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Let us assume that we have this cylinder, and this is the axis of the cylinder, and let us

assume that initially the height of the cylinder is; let us say h. Initially we have an axis

system, where it is exactly in the middle. So, it is at a distance h by 2 from the top or the

bottle. So, this is my x and y and z. So, let us assume in this particular construction, I

have I 1, I 1, and i. Let us call it I 3, just to clarify I mean just to make indistinct.

So, I 1 and I 1 at the moments of inertia, around x and y and I 3 is along z. Now let us

assume, and also please remember that by symmetry of the problem, this is also the

center of mass of the system, because it is a symmetric system with uniform density rho,

the middle point of the axis has to be the center of mass right.

So, now if I shift my axis system down here; so, let us say this is my new set of y and x

axis, z axis remains the same. Can you use the parallel axis theorem to check what will

be the new sets of moment of inertia around, or I mean of course, it will give us the

principle moment of inertia, because we are still staying on this axis? What will be the

new values of I 1; I 1 and I 3. Of course, we can do that. So, the shift is by h by 2 right.



Now, if I try to calculate it for I 1. So, I 1 initially it was i. Please understand that initial I

1 is this ic for x axis. So, I 1 prime, let us call this I 1 prime, let us call this the primed

axis. Please do not confuse it with the previous prime notation we have used am, just

taking a specific example. So, 1 prime is equal to I 1 plus m, let us m, let us say m be the

mass m h by 2 whole square. So, I 1 prime will be I 1 plus m h square by four.

Similarly, I 2 prime will be I 2 plus m h square by 4 I 2, which will be equal to I i 1

prime, and I 3 what will happen to I 3. See we have not shifted along the z, I mean sorry

the shifting is along z. So, there is. So, we have kept our self on the same z axis, z has

not shifted. So, I 3 prime will be equal to I 3. So, we have shifts in the first 2 components

or the x x and y component iz component remains unaltered. So, this is a result we might

use later on.
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Now, we will end the class with a very small problem. The first problem of this problem

is that we have many, actually I have just kept it for till the end, so that we can finish it

all together. So, we have a rigid body. Once again this is a familiar rigid body, we have 3

particles at 3 different positions. We have to find out the moment of inertia about an axis,

which is going through center of mass and perpendicular to the plane of the body.

Now, once again I am not solving it for you, but I will give you a sufficient hint, so that

you can do it.
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Now, let us say this 3 has the mass points. So, we can always form a triangle through

these 3 masses, and by symmetry of this problem the center of mass. See I frankly I do

not recall what was the values we have determined for center of mass, but you can find it

out once again, it is very easy the center of mass will be somewhere on this plane by the

symmetry of the problem.

Now, we have to find out the moment of inertia about an axis, which is perpendicular to

this plane, plane of the triangle, and going through center of mass. Ideally we have to

find out the equation of, or we have to find out this vector direction, and have to take all

the distance from this vector by using di is equal to ri cross n capped, but in this case,

this is not necessary, because we already have a point, which will be falling on this axis,

and also it is in this plane which is the center of mass.

So, what we can do is, once we know the coordinate of the center of mass, which we

calculated in the previous class, we can just take mutual distance of these 2 points, and

we know that mutual distance between 2, any 2 points, d is given by root over x 1 minus

x 2 whole square plus y 1 minus y 2 whole square plus z 1 minus z 2 whole square.

So, similarly what we can do is, we can calculate d 1 for d 1 and d 2 and d 3 between

these 3 points, and we can compute I to be equal to sum over I mi di square. So, you can

finish it  yourself,  its  1 way of looking at  it.  Now that was, we were,  that  was easy,

because we already specified that the axis is going through center of mass.



Let us assume if I give you any arbitrary axis to work with it is; which is not even going

through center of mass, or let us say I give you an axis, which is going through the origin

in some arbitrary direction, then we just have to follow this construction. We have to

construct a unit vector, which is, if I give you a direction; that means, I am giving you

the unit vector, or if I am giving you a vector direction, you just have to divide it by the

magnitude,  and you get  an unit  vector.  And from this  you just  calculate  the  mutual

distances of 3 points, does not matter if it is falling inside the rigid body or outside, does

not matter, really moment of inertia can be calculated.

And then you have to just, you know in that case this will be your d 1 d 2 and d 3, and

then you go back to, go back and put your values in this formula, and you get an value of

moment of inertia. So, we can always do that right. So, we end here and next class we

will do some problems. And also we will go forward in terms of, in discussion of civil

moments of inertia, we will define something called ellipsoid of inertia, and then we will

move on to Euler’s equations.

Thank you.


