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Kinetic energy of a rigid body is T we can write T rotation which is half m i v i square.

So, now onwards we will be using a summation convention, which is called Einstein

summation  convention;  that  means,  if  in  a  summation  if  the  index  is  one  index  is

repeated twice that means, a summation is taking place over that particular index. So, for

example, this one actually there is a summation over i, so total rotational kinetic energy

is half m i v i square sum over all i, so that means it is the kinetic energy of one particle

and then the summation is running over all i of the system. So, i essentially runs from 1

to  n,  n  being  the  number  of  particle  in  the  rigid  body.  But  if  we  follow  Einstein

summation convention we do not need to write this summation explicitly instead what

we can do it, we can just simply write it like this.

Now, in this assumption in this convention because the index i is repeated twice in this

summation that means, there is a summation implemented over i anywhere. So, we will

be following this summation convention for the rest of this discussion on rigid dynamics

and also in the next section when we will be discussing Lagrangian dynamics we will be



using the same summation convention. Now, please keep this in mind. So, if I will just

give you an example. So, in this case for example, we wrote for a system of particle total

linear momentum p was given as m i v i sum over i. So, in this convention, sorry p will

be  simply  written  as  m  i  v  i.  Similarly,  the  angular  momentum  L,  which  was  a

summation over r cross p i, so that will be given as m i r i cross v i.

So, we are just getting rid of the explicit summation symbol using this convention and

this can be a bit confusing at times, if necessary we will switch back to the you know

conventional  summation  symbol  by  putting  a  summation  here.  If  necessary  because

sometimes it can be if there are more than one indices in the system, it can get a bit you

know bit confusing sometimes some of the some of the indices has not we do not need to

assume  a  summation  over  some  of  the  indices  also  those  things  I  will  explicitly

mentioned.  But  typically  when  there  is  only  one  index,  we  will  be  following  the

summation convention.
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So, coming back to the dynamics of rigid body, so the situation was following. We have a

rigid body; and there is a space set of axis, which is fixed in space. And there is a body

set of axis which is moving with the rigid body. So, we have the x prime, y prime, z

prime axis; and we have x, y, z axis which is moving along with the rigid body. And what

we are doing here we are simply writing the rotational kinetic energy of this rigid body,

right now we are writing it  in terms of a fixed or rather the space set  of coordinate



system. So, just write it here. So, this is my space set of coordinate system and this is the

blue one is my body set of coordinate system. Space means fixed in space; and body

means rotating with the body.

Now, so actually what we were aiming to do in the last class, there were two definitions

of moment of inertia one was this so called tensorial definition I let us say I x x which

was given as rho dv r square minus x square and I y z for example, was given as minus

rho dv y z. So, this is one definition and the other definition we already know from our

you know school textbooks or early you know whatever classical mechanics we have

studied so far we know that I the moment of inertia around an axis system can be given

as m i di square. Where di is the physical distance of this particle i ith particle from the

axis. So, let us say this is my rigid body and this is my axis, so then I have I hope you

can see it, so this is my ith particle. So, this is my physical distance di right. And let us

say this is my origin, so the position vector of ith particle is r i.

Now, how to correlate this once again we are using the summation convention, so it is

not necessary to put the explicit  summation symbol here. So, the question is how to

correlate this? In order to do that what we are trying to do is we are just writing this this

expression  for  rotational  kinetic  energy  assuming  that  the  body  is  rotating  with  an

angular velocity omega around this fixed or does not matter if it is around this fixed

direction, it could be any arbitrary direction n capped around which this rotation is taking

place. The whole thing is body set of axis is moving alongside the body and space set of

axis is fixed

Now, we are writing this expression for total rotational kinetic energy which will be half

once again m i and if you recall v i is nothing but r i sorry omega cross r i right. Because

when we look from the space set of axis, the only source of velocity linear velocity is the

angular velocity. So, we can due to this angular velocity. So, if you remember how we

rewrote that this is the expression which we can write.
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Now if i do this substitution, so it will be v i one we just we are just keeping like this into

r i. Now, we can do a series of manipulation what we can do is essentially is, so this three

if you recall this is a vector one dot product and one cross product between three vectors

and we can do this cyclic permutation and with that we can bring r i. So, you can write it

as  r  i  dot  v  i  cross  omega  then  we  can  bring  omega  in  here.  So,  after  three  such

permutations, we can essentially write this as, so the final will be omega dot, so omega

means omega comes here that means, r i has to go there r i cross v i. And you can slightly

modify this again and you can write this as r i cross m i v i.

Now, if you now pay attention r i cross m i v i is nothing but your p i right that is the

linear  momentum  of  the  ith  particle;  and  r  i  cross  pi  is  nothing  but  your  angular

momentum L right, so this essentially is omega dot L. So, T is equal to omega dot L and

if you recall L can be written as I omega. So, we wrote this tensorial equation that L is

equal to I omega, I being the moment of inertia tensor and omega is the angular velocity

vector that is the equation we wrote in the last previous class. Now, if we substitute here

then we get T is equal to half I dot sorry omega dot, omega dot I dot omega. So, this is

the final form we can write. So, what we are doing is we will just move it here removing

this I hope you can understand these steps. So, T is simply half omega dot I dot omega.
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Now, omega is the angular velocity around arbitrary axis of rotation. So, omega can be

expressed as omega n capped, where n capped is the direction of this arbitrary axis of

rotation. So, it is a unit vector in the direction of an arbitrary axis. So, using this the

expression for T can be written as half omega square n capped dot I dot n capped right.

Now, keep this in mind, so T is equal to this. So, this is one expression we have to keep

in mind. Now, if I go by this definition of moment of inertia, then what do we get. So, I

have to remove something let us remove this part, because we will need this figure.
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See di is the distance the perpendicular distance between this and this. And let us say this

if this angle is some angle alpha, then we see from this diagram that d i is equal to r i sin

alpha.  Now, when we specify an axis along which the angular momentum has to be

computed, that means the rotation is taking place around this particular axis. So, this is

our n capped direction in this particular case. Now, di is r i sin alpha; r i is pointed in a

particular direction and the angle between n capped and r is also alpha. So, this can be

written as, so di is, so this can be written as n capped cross r i mode. So, we can do that.

Instead of writing r i sin alpha we can just write it as n capped cross r i which will the

magnitude of n capped cross r i which will be once again r i sin alpha.

So, I by definition which is m i di square please remember that there is a summation

convention that means, summation is running over this index i, which is m i di square is

n capped cross r i square. Now, if I compute I omega square which will be multiplying

this thing with omega square it will be m i, why we are doing it we will know in a

moment just be patience, be patient for a while. Now, once again we can use the relation

that omega is equal to omega n capped. So, it is actually we can take this two this omega

square inside and we can write this as omega cross r i whole square. Now, omega cross r

i is nothing but your v i, so that is another relation that we already have seen. So, this is

your m i v i square which is nothing but from the initial relation of T rot what we have

got T rot was half summation over I m i v i square right. So, this is nothing but your two

T rot 

So, once again we got another expression for T rot. So, this is one expression. And from

here we got another expression for T rot, which is half I omega square. So, once we

compare these two expressions, what do we find we have a quantity here which is n dot I

tenser dot n and we have a quantity here this is simply I. Assuming that these two n caps

are  the  same.  So,  the n cap  in  this  direction  in  this  figure picture  or  in  this  in  this

calculation  whichever  we have  taken is  the same n we can easily  compare  this  two

expression  and  we  can  write  what  we  can  write  I  will  just  remove  this  part.  So,

comparing these two expressions, what we can write is I is equal to n capped dot I tensor

dot n capped. Now, this is a very, very, very important result.
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What  does  it  signify  see  what  I  told  you  in  the  last  class  I  told  you  that  a  tensor

essentially  contains  all  the  information  it  need  to  have  we  need  to  know  about  a

particular property. If it  is a polarization tensor then it tells you everything about the

polarization of that particular system we want to know. If it is a resistivity tensor then it

tells  us  everything  about  the  resistivity  we  want  to  know  of  a  particular  system.

Similarly, if it is a inertial tensor measured with respect to one fixed point this is one

thing I am pressing once over and over again.  Because once we move this origin to

another point this I tensor will completely be different it will be a new set of I tensor. If

we move it along one particular, you know if we move it in a systematic manner maybe

there is some very specific relation between two sets of I tensor, but in general it will be

different from each other right.

So, given the origin remains fixed, the two sets a one set of I tensor the moment of

inertia tensor contains all the information about the moment of inertia of the system of

that rigid body we want to know. And if we want to know the value of moment of inertia

in a particular direction which is given by this n capped, all we need to do is we need to

project the tensor please understand that we need to project the tensor in that particular

direction and that is exactly what we are doing here.

Now, if you look in terms of the matrix operation this operation see what is n capped n

capped  is  a  direction  vector,  it  gives  you an  unit  vector  in  some specific  direction.



Typically,  an  unit  vector  in  some particular  direction  is  represented  by  a  system of

direction cosines; we are all familiar with the concept of direction cosine. So, we write

three angles alpha 1, alpha 2, alpha 3 which are direction cosines with respect to some

fixed x, y and z I mean we have of course, we have an axis system we cannot have an

arbitrary direction right. So, with respect to that axis system we define the cos, so the

angle between that particular direction and x axis is alpha 1, y axis is alpha 2, and z axis

is alpha 3. So, these are my direction cosines.
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So, your n vector typically this in the vectorial representation n capped is represented by

this column vector. So, this is a 3 cross 1 vector, 3 cross 1 matrix. A vector is a 3 cross 1

matrix. Now, when we operate a vector from left hand side of and I is a as we know it is

a 3 cross 3 matrix we will come we will discuss about specific properties of the 3 cross 3,

3 cross  3 matrix  very soon. And n when we operate  from the left  hand side.  So,  it

becomes a not a 3 cross 1 matrix in this form, but a matrix in this particular form. So, it

will be a 1 cross 3 matrix if we operate it from the left hand side. So, this one is this and

this one is this. Now, assume this look at this you have this 3 cross 3 matrix, we do not

need those things anymore.
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So, we have this  3 cross 3 matrix  which you multiply  from left  from this  side,  you

operate it with a 3 cross 1 matrix; and with from this side you operate it with the 1 cross

3 matrix, it is a 1 cross 3. Now, the operation between this and this, what will you get.

So, sorry it is a 3 cross 3, it is a 3 cross 3 matrix, and then you operate it with the 3 cross

1 matrix. So, this from the rules of matrix multiplication you know that the this operation

will give you once again a 3 cross 1 matrix. If you are not familiar with this type of

operation,  I  would  suggest  that  you please  go  back  to  your  textbook,  where  matrix

multiplication has been described. And you will see that this operation will give you 3

cross 1 matrix.

And a multiplication of on 1 cross 3 matrix to a 3 cross 1 matrix will essentially give you

a single number which is 1 cross 1 that means, a single number and that number the final

answer is, so final answer of this product is a number which is the moment of inertia

along that particular direction. You want to know moment of inertia to with respect to

another direction which is given by some arbitrary you know n capped just calculate I

dot dash will which will be equal to n dashed I n dashed. So, this tensor I contains all the

information you need to know about the moment of inertia with respect to this fixed

point when the rigid body is I mean executing rotation with this fixed point this matrix

essentially contains all the information you want to know. So, this is essentially the idea

of a tensor.
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Now if you want to compare it, so this is how we project a tensor, if you recall how do

you project a vector again once again we have a direction cosine. Let us say this is a

vector,  some  vector  A.  And  we  have  a  direction  cosine  given  which  points  to  this

particular direction n. How do you do this, how do this how do you project A in this

particular direction? We simply take A dot n or n dot A dot product does not matter which

we take it both are you know both are vector. So, if it is n cross A or A cross n, we can

might as might as well write n cross A. So, this is how we project a vector. Now, in case

of tensor we have just seen that we should have an operation in this symmetric form it

will be n dot I dot n. So, we see that this is the projection of a vector.
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So, when we compare vector and tensor. So, in terms of projection vector is simply A dot

n is it feasible, and tensor is simply n dot I dot n or it could be any tensor actually I mean

it does not matter, if it has to be the you know we can just take some tensor A. So, here a

is A vector, here is A tensor, tensor symbol is this and vector symbol is arrow in one

direction tensors symbol is a closed array, a closed arrow sorry whatever.  So, and in

terms of representation in I will just write rep, rep for representation; representation is

either a row mat row vector or a column vector for in 3D actually in the 3D world we

know of and here the representation is a 3 cross 3 matrix.

Now, there is another very important property we need to consider is the rotation. So,

this is one property, this is another and third is rotation. Quickly, let us look at it we have

x, y, we have a vector let say some vector r in this x, y plane I am just taking 2D, because

it  is  easy to  demonstrate.  Now, we want  to  rotate  it  by some angle  theta  in  let  say

clockwise direction or anti clockwise direction, does not matter. So, now, this new vector

is called r dot it is just the same vector rotated by an angle theta. How do we write it if

you recall we write it with the help of, so we write an equation of the form r dot is equal

to R times r.

Now this capital R is a rotation vector which in this particular case 2D case in a for 2D

rotation has the following form cos theta minus sin theta minus sin theta cross x square

sorry sin theta 0 0 1, 0 0, this 0 0 1 means the z axis remains invariant under this rotation



because it is in the 2D plane. So, the rotation is around z axis, z axis is it is pointing out

of this board, so that is why we have 1 here and the modification. So, the components of

r prime and R they are related by this matrix transformatiom. So, essentially because we

are just taking 2D we can just get rid of this column also anyway.

So, this is how a vector is rotated and this set of transformation vector transformation,

there is a very specific name for it, it is a class of transform group of transformation

which are called the orthogonal transformation. So, this is orthogonal transformation. So,

we see that for vector this is how we apply the orthogonal transformation, the general

form of orthogonal transformation for a vector is r dot is equal to R times r. So, capital R

times r vector, where capital R is a rotation matrix of this general form. So, it can have

many different forms also and there is there are very specific sets of property for an

orthogonal transformation matrix which we are not discussing in this course.

But what is important is if we want to rotate a tensor in a 3D plane how do we go by I

mean we cannot represent a tensor with an arrow like this we cannot do that. But you

have  to  trust  me  on  this  that  a  tensor  in  3D  plane  in  is  rotated  by  this  following

transformation. If A is the tensor then this is the transformation that rotates a tensor in a

3D yeah in a 3D coordinate system. So, for rotation, we have R times A; and for rotation

of tensor, we have R inverse A R. Now, this R inverse can also be R transpose because of

there are certain properties of orthogonal transformation which we are not discussing

here.  Now, what is important here what we what we need to understand is there are

certain things which can be proved for an orthogonal transformation.
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The very important aspect, which we will be considering is any real symmetric tensor

can be diagonalized by a suitable orthogonal transformation. There are two things which

we  need  to  focus  on  one  is  the  real  symmetric  tensor  and  the  second  word  is

diagonalized.  Now,  let  us  look  at  the  first  word,  what  is  real  symmetric  tensor?

Symmetric tensor is when we have an upper half. So, in the matrix representation, if we

have if I draw a diagonal in this matrix and if we have an upper half which is exactly

identical to the lower half then it is called a symmetric tensor. And real means when all

the elements of this matrix are real numbers nothing imaginary here then it is called a

real symmetric tensor. Now, we will take it up in the next class and we will show you

that  our  inertia  matrix  is  a  real  symmetric  tensor;  and  by  this  result,  it  can  be

diagonalized by a suitable orthogonal transformation; also we will discuss what is the

meaning of diagonalization.

Thank you.


