
Classical Mechanics: From Newtonian to Lagrangian Formulation
Prof. Debmalya Banerjee

Department of Physics
Indian Institute of Technology, Kharagpur

Lecture – 03
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So if you recall we wrote this equation as m d v d t is equal to mg minus m k v vector.

Here now here the drag force has been taken as force per unit mass. If we do not take this

drag force as unit force per unit mass what do we get, we simply have m here. So, the

equation becomes d v d t is equal to g minus k by m v. And the trickier I taught you is

very recently is to set this equal to 0 in order to get terminal velocity. And we get a

terminal velocity to be equal to g by gm by k by setting d v d t equal to 0. Also if we

solve this full equation we get an expression of v to be equal to over minus k by m t.

So, you see not only the terminal velocity is modified, now if we write this as vt 1 minus

e to the power minus t by t 0. We see that vt becomes m g by k and v 0 becomes m by k.

So, if the same result, as the as we got from the previous date previous set of equation.

Only k is replaced by k by m. And also note that when we have t 0 is equal to 1 by k; that

means, the unit of k is given as second inverse, when I have t 0 is equal to m by k the

unit of k is given by some kg or gram maybe kg second inverse. So, depending on if the

data is given in a second inverse or kg per second inverse we have to use one of these 2

equations accordingly.



So, in one case we have we have to use vt equal to mg by k and t 0 equal to m by k. And

the other case we have to use vt equal to g by k t 0 equal to 1 by k. And this is if the

initial force is given as minus k v, and this is if the initial force is given as minus m k v .

The final equation becomes same only thing the value of vt and t 0 if change.

Now, there is another type of very important, I mean there is a very important application

for this type of equations and we will discuss one such application which is called the

falling ball viscometry. That is used as a laboratory experiment also in industry people

use it a lot in order to measure viscosity of a fluid. So, how it how does it work.
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Let us assume there is a column of viscous liquid. So, there is some viscous liquid and

what do you do we drop a small metallic sphere of mass m and radius r in this column of

liquid.  Now what happens is  it  as it  starts  falling through, because of this  there is a

viscous drag present it essentially attains a terminal velocity.

Now, to in order to get gain a more mathematical insight let us try to see what are the

forces acting on this particular thing. Of course, there is a force downwards which is due

to it is mass. Secondly, there is a force which acts upwards due to the buoyancy, we all

know buoyancy right. Buoyancy is the force applied by the met the liquid displaced by

this particular  body and of course, there is a viscous drag force.  So,  if  we write  the

downwards  forces,  this  is  simply  mg  and  upward  forces,  one  is  the  just  a  minute

buoyancy and the other one is viscous drag we call this one as fb and this one as fr.



So, if we write the force equation, which will be m dv dt is equal to mg minus fb fr. Now

what are the expression for this buoyancy forces and viscous drag. Buoyancy force the

expression is pretty straight forward we all know it buoyancy force will be the volume of

this  particular  object  multiplied by the multiplied  by the this  one the density  of this

liquid.

So, fb will be 4 third by r cubed rho. So, let us assume rho is the viscosity of this liquid.

Similarly, we can write m which is the mass of this small metallic balls as 4 third pi r

cubed sigma. Sigma being the so rho is the viscosity, sorry. Rho is the density of liquid

sigma is the density of solid. This solid the material of this ball it could be a steel ball it

could be here any other hard sphere. And we also introduce or not introduce you know

probably know that there is a viscosity. So, it is a viscosity eta we call the viscosity of

liquid.

Now, where does this eta come in eta comes in to this term there are theories which tells

you that fr will be 6 pi eta r v, v being the instantaneous velocity of the of this ball, ball is

falling with a velocity v 6 pi is a constant r is the radius. And eta is the viscosity and this

is  the  equation  of  viscous  drag  according  to  stokes  law.  So,  the  viscous  drag  is

determined  by  stokes  law  and  there  is  an  expression  for  it  please  remember  this

expression is valid only for spherical object. And it is also a very idealistic equation in

reality  this  6 pi eta  I mean 6 pi is not a 6 pi it  generally there is a correction term

associated with it.

But let us not go in to the all this technical details, let us keep it simple and if we now

plug in this expression for f b f r and m in the left hand side. So, with essentially what we

are planning to do is we are trying to get an expression for the terminal velocity for this

particular case. So, what happens is for terminal velocity once again we set d v d t equal

to0. So, the left hand side becomes 0, now if we do that and we put v t for terminal v

because we are setting d v d t equal to 0. So, this equation becomes m. So, m will be 4

third pi r cubed sigma g minus 4 third pi r cubed rho minus 6 pi eta r vt equal to 0.

Now, once we simplify this, we get an expression for vt which is sorry 2 by 9 it will be 2

by 9 g, g r square sigma minus rho divided by eta. So, we have an expression for the

terminal velocity, but that is not it. So, that essentially what we are planning to do is we

are  trying  to  calculate  we are  trying  to  estimate  eta  from this  experiment.  So,  what



happens is in reality, there will be marking in this on this tube which is separated by a

distance l. Now there will be one camera here and one camera here.

So,  once  the  ball  starts  falling  of  course,  it  will  have  sufficient  length  on  this  this

marking.  So, that by the time it  reaches  here,  it  falls  it  reaches  it  gains the terminal

velocity. Please remember this experiment is will not be a valid experiment unless and

until  this sphere reaches sphere gets to it is terminal velocity assuming that we have

enough length for the sphere to travel by the time it reaches, here it reaches the terminal

velocity.

What we can do is we can take to snapshots of this sphere passing this point and this

point, which is separated by a distance l and then we can calculate the time t for which it

took in order to reach from this point to this point. And then your vt will simply be l by t

you got it.  So, using this 2 cameras we measured the time and we already know the

distance l. So, we get vt equal to l by t, and when we plug it back in here we get eta will

be 2 by 9 g r square sigma minus rho times t by l out of this, expression 2 by 9 is a

constant which has a fixed value l. We know g, we know r, we know a priory sigma and

rho also we know all we need to do is we need to calculate this t or we need to measured

this t at accurately enough. And essentially we have to give we have to if only if I can

measured the value of t we can immediately get a value for eta. And this whole setup is

called there is a name for it. It is called the falling ball viscometer.
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So, it  is called a falling ball  viscometer which is a. So, I will  write it  again.  I think

probably you would not see it properly I will just write it here falling ball viscometer. So,

it is a very simple experimental setup, but which is pretty accurate we people use it in

their laboratories in order to get a better first order approximation of first order estimator

of this viscosity sorry viscosity eta of the fluid also industry people use it a lot.

So, now with this I just want to give you one more set of information, which is pressured

drag.
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Now, viscous drag the expression for viscous drag was f is equal to 6 pi eta r v. Now this

is valid for a very regular shaped object which is moving slowly enough inside the fluid,

if the v has to be very small I mean not very small, but there are certain limits put on put

on v in terms of the Reynolds number. And I am not going into the details of that, but as

a as a thumb rule we can assume that if, if it is a well shaped small object moving with a

limited speed. Then we can assume that this stokes law is a good approximation of the

drag on this particular on this object and we call it the viscous drag.

But when the velocity becomes higher and higher, then from we essentially enter into the

regime of turbulence flow and there we have an expression. So, we call it f v, this is for

viscous drag and we have a pressure drag which is a half c rho a v square rho being the

density of the liquid a is the cross section of the object, which is moving the effective

cross  section  v  and  c  is  something  called  a  shape  factor,  which  is  related  to  the



geometrical shape of the object, but let us not going in to go in to the all the details, but

what is more important is v square.

So, essentially we can represent this force in our situation as minus k v square. So, in

certain occasions you might see in in the problems or in in certain books that some of the

in some of the treatment force the resistive force has also an also been taken as minus k v

square. And you will immediately know that this is also nothing. So, what why I am

trying  to  tell  you  this  because  you  need  to  know  that,  this  is  not  something  very

impractical it is just the just that people are working in the pressure drag regime.

So, let us not go in to the details of this things and let us try to solve some problems.
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First problem. We have 2 problems for today’s class. First problem is a motor car is

driven with a constant force f at all speed meets with their registers proportional to the

square  of  the  velocity.  If  u  is  the  maximum  speed  of  the  car,  show that  it  is  it  is

acceleration varies us u square minus v square at a speed v. So, here the force which with

which the car is driven is a constant force and it is given as f.
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So, if we write the equation of motion it will be m dv d t equal to F minus k v, k v

because sorry k v square.

So, because k is the proportionality constant because it is given that the resistive force is

proportional to the square of the velocity again. Please remember that because motor car

is an object which moves relatively faster compared to a you know raindrop falling rain

drop  or  sphere  falling  in  the  viscometer,  motor  car  has  a  fast  I  mean  much  higher

velocity.  That is why we are working in the pressured drag regime and we have the

viscous for or the force resistive force. It has minus kv square. Now if u is the maximum

velocity possible, now understand the situation is let us say this is our motor car and it is

moving under the influence of a constant force F which is in this direction it comes from

it is engine.

Now, air resistance will try to slow it down. And essentially these 2 forces will come

back and after is what happens is, because this force F is a constant, we have to at some

point we will reach a maximum force u r sorry maximum velocity u beyond which the

car cannot move. And that u will be reached if d v d t equal to 0. Now when this happens

we immediately see that, F if d v d t is equal to 0 then F minus k u square is equal to 0.

And that essentially means k is equal to or rather F is equal to k u square ok.

Now, if we move back to the original equation, and put this expression for F over here

we see that our equation becomes m d v d t equal to k u square minus v square. Or d v d t



is equal to k by m u square minus v square. So, we got out desired result, this is our

acceleration which is proportional to u square minus v square at all speed v with the

proportionality constant k by n right. So, we have solved this problem.

Let us move to the next problem. The next problem is a paratrooper falling from breast

and acquires a limiting speed of 24 kilometers per hour. Assuming that the air resistance

is  proportional  to  the  instantaneous  speed  determine  how long  it  took  to  reach  the

terminal velocity. So, to in order to solve this problem. 
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We immediately recall that v is given as v t 1 minus e to the power minus t by t 0 right.

That was the expression we used irrespective of whether we took kv for the force of

minus  a  minus  k  v,  for  the  force  of  minus  m k  v  for  the  force  that  was  the  final

expression only thing is v t and t 0 we will have slightly different form.

Now, it is given that vt is equal to 24 kilometer per hour, which will essentially reduced

to 24000 by 36000 meter per second 2 (Refer Time: 23:02) 2 3. So, it will be 20 by 3

meter per second. So, this is our terminal velocity.

Now, what we need to find out essentially is 5 t 0. As I have discussed just sometime

back that 5 t 0 is the time taken to reach vt. So, if we assume this particular expression

that vt equal to g by k in that case t 0 will be simply equal to 1 by k and if we take gt

equal to equal to vt equal to gm by k. So, this will be equal to m by k. So, all we need to



do is we need to calculate this k or k by m whichever way you prefer it. It will essentially

give you the same answer.

Let us do it with simply k, because it will look better nothing else we know that g is

equal to 10 meter we are assuming that g is equal to 10 meter per second square it could

be 9.8 meter per second square, but just for simplicity I am taking 10 meters per second

square. So, that will give you k equal to this is 20 by 3. So, it will be 10 divided by 20

into 3 second inverse. So, essentially it will be 3 by 2 second inverse and we need to

compute 5 t 0.

So, 5 t 0 is equal to t 0 so; that means, t 0 is equal to 1 by k, 5 t 0 is 5 by k which will be

5 into 2 by 3 second which will be 10 by 3 seconds equal to 3.33 seconds. So, the final

answer is 3.33 seconds a paratrooper, who reaches a terminal velocity of 24 kilometers

per hour it takes 3.33 seconds to reach the terminal velocity. So, immediately know that

although it looks I mean it is not that straight forward. Because this viscous drag is not

very a very straight forward phenomena. Sometime we have a more I mean more critical

expression for the terminal velocity.

We are working on a very simplistic model here. Please remember always remember that

the actual physical situation could be lot more complicated we are just assuming that

there is no you know flow in air and there is no turbulence in the air which is not true

there is a flow there is a turbulence. So, all these terms it comes into account, but even

without considering all this we immediately see that, it is a very short time it might take

little  longer  might  take  even  shorter,  but  almost  immediately  after  opening  of  the

parachute a paratrooper reaches the terminal velocity. And that is why even after landing

from a distance of an height of you know sometimes 10s of kilometers they do not broke

their break their bones. So, this is essentially it and also I would like to touch up on one

particular topic which is a projectile motion under air resistance, I will not go in to the

mathematical  details  of  this  because  this  is  light  slightly  too  complicated  and  it  is

probably not needed at this level.
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But I will just give you a very basic brief description of what happens. So, what happens

when we fire a projectile, let us there is no air resistance nothing and we all know that a

projectile essentially takes a parabolic path. And the range of the projectile this is called

a range of this projectile depends on the initial velocity v 0. And the angle theta we know

that and we have all solved and we know that by optimization of this range, we get theta

equal to 45 degree is the optimal angle for which the projectile will have maximum of

range.

Now, what happens is in case there is air resistance present, what happens is a projectile

will fall short of it is desired range. And what is more important is if we fired the I mean.

So, this all this things can be solved automatically, but I am not going into the as I said I

am not going into the details of the equation, what I am more concerned about to give

you a over all description physical description of what happens. What is very important

is, if we fired the projectile higher as in if the angle theta is somewhere in the range of 60

or of 70 degree the effect will be more prominent, let us say for 60 degree if this is the

desired range then with air resistance it will fall much shorter, but where as if we fired

the projectile at an angle of 20 degree, if this is the range with air resistance the range

will hardly change.

What I am trying to tell us as we go higher and higher up in this angle, the effect of air

resistance  is  more  and more  on  the  project  elegants.  And that  is  very  quantitatively



understood because you know as we reach higher there are more scope of this particular

object which is falling to reach terminal velocity. If you are not reaching high enough the

terminal  velocity  might  not  be  reached.  Now  all  these  things  can  be  looked  upon

mathematically  more,  mathematically,  but  we  are  not  going  into  this.  So,  with  this

discussion we are closing the topic of motion in resistive medium. Next class onwards

what we are going to do is we are taking up their problem of variable mass.

Thank you.


