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Welcome, we have been discussing the fluid equations and fluids flow and in the last class we

derived the 3 equations essentially, that we used to govern, to determine the flow of fluids.

(Refer Slide Time: 00:32)

So we had first the continuity equation and then we had Euler's equation, the Euler equation

and we had the energy equation. And in some of the situations that we are interested in we

also the fluid is self-gravitating. So the body force comes from its own gravitation potential,

from the gravitation it generates on itself. So f is -grad phi and that phi is governed by this

equation, the Poisson equation.

It tells you how the matter, the fluid itself produces a gravitational field. So these are the fluid

equations and in today's class we shall consider a few examples of solutions and implications

of the fluid equation. So let us start off with the simplest possibility which is hydrostatics.

(Refer Slide Time: 01:45)



So we shall discuss hydrostatics first, and what we mean by this is that the fluid is at rest. So

there are no time derivatives and the velocity of the fluid is also 0. So all time derivatives

vanish and the velocity is also 0, so under this condition, the continuity equation is trivially

satisfied, because all time derivatives vanished and the velocity is 0. The Euler's equation, the

first 2 terms involving the velocity do not contribute. 

And we have essentially grad P = rho*the force per unit mass or the acceleration, so that is

the first equation, that is the Euler's equation. So the 2 forces, the pressure gradient force and

the body force they have to cancel out. And the energy equation again the time derivative is 0

the velocity is also 0, so it tells us that the heat loss, the rate of at which the heat is lost has to

be 0.

So hydrostatics we have 2 very simple equations which have to be satisfied. Let us consider a

few examples  of  hydrostatic  equilibrium where  we  have  a  fluid  which  is  in  hydrostatic

equilibrium.  So  let  us  first  a  fluid  which  has  uniform  density  more  or  less  and  same

temperature also, like water.
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So let us say it is incompressible, and the temperature isothermal. Temperature is also the

same throughout. So the example is a tank full of water or some fluid like water which is

nearly incompressible for the many purposes here. And this is the z direction let us say that

choose the z direction upwards. Let us call this the z direction and this z = 0, and the pressure

here is let us say P0.

So we have this equation it is now, since the temperature is the same throughout there will be

no heat loss from one part of the fluid to another so we did not bother about this. Let us look

at this equation, this equation tells us that dP dz =, now we have the density of the fluid and

this  is  force  per  unit  mass,  the  body  force  and  in  this  case  it  is  just  the  gravitational

acceleration, so this is minus it acts downwards, the force acts downwards the gravitational

acceleration so -rho*g along the z axis.

And the solution to this straight forward,  so we have P = P0 -rho gz.  As you go up the

pressure keeps on falling, or there you may say that there is pressure due to the column of the

fluid above the particular point that you are looking at. This is a very simple application of

the fluid equations, hydrostatic.

(Refer Slide Time: 06:48)



Next let us consider same thing. Let us consider a gas an ideal gas which is isothermal. So we

can think of it, an ideal gas so it is isothermal at the same temperature and we have an ideal

gas. So the same thing, there is a gravitational force acceleration and we can assume that the

gravitational acceleration does not change. An example of this application of this could be the

surface of the earth.

And  we  are  interested  in  how  the,  there  in  the  atmosphere,  earth  atmosphere,  we  are

interested how the pressure of the atmosphere changes as we go along the z direction, again.

Let us that z = 0 over here at the surface of the earth. And we are not concerned with the

change  in  the  gravitational  acceleration  that  the  distance  that  we  are  interested  in  are

relatively small compared to the radius of the earth, few kilometres.

So suppose I go from here to the top of mount Everest, my height will change by roughly 10

kilometres, > 10 kilometres. And the radius of the earth is, let us assume that the gravitational

acceleration is more or less same, temperature also let us assume that it is more are less same,

though we know that at the top of mount Everest is going to be much cooler. But let us make

some simplifying assumptions like this.

And go ahead and see what happens if we assume that the whole atmosphere is in hydrostatic

equilibrium. So again since the temperature is the same everywhere, there will be no heat loss

from individual fluid elements. So the heat loss is 0 and we have dP dz = -rho*g, well that is

the first equation. Now we now this is an ideal gas for an ideal gas we also have that the

pressure is PV =NKBT.



Pressure * the volume of the fluid = the number of atoms or molecules in the fluid * the

Boltzmann constant * the temperature in Kelvin, absolute temperature. That is the relation

between the pressure volume and the temperature for an deal gas, PV = NKT, N is the total

number of or we can use capital N for this total number of atoms or molecules in the fluid.

Now this we can write as P =, so I can divide N/V multiply by the mass of each particle,

N/VKBT and I should divide by mass of each particle. So we have the pressure =, this we

know is the density mass * number of particles divided by volume, so it is rho KBT/m. So

with this relation between pressure and the density they are not independent now, temperature

is the same throughout the atmosphere.

So this is the atmosphere we are dealing with, the atmosphere we are dealing with is here,

and the temperature is the same throughout. So this equation now becomes d rho dt =, so let

me put all the actors on the right hand side, we have –mg/KBT*rho, d rho dz, sorry it is a dz

derivative d rho dz = this. Now we can integrate this, integrate this is straight forward we

have d rho dz = a minus constant*rho.

So  the  integral  of  this  is  straight  forward  and  what  we  have  is  that  rho  =  some  rho0

exponential –mgz/KBT. And you can check it for yourself in general that if the body force is

the gradient of a potential - the gradient of a potential acceleration, then we can write this as

rho0, you can check this that it comes out with this where f. So if the acceleration f, which we

have here is going to be constant is the gradient of some potential.

Then it can in general be written like this. This I am not sure, but you can check it out for

yourself.  So what  do we see over  here,  what  do we find is  that  if  you assume that  the

atmosphere has a constant temperature, and the gravitational field is a constant as we go up,

then  the  density  of  the  air  falls  exponentially  with  the  height  and  the  density  falls

exponentially implies the pressure also falls exponentially with height.

So this gives you a reasonable approximation of the density of air and the pressure decrease

as you go up above the earth surface and the pressure and the density, for example on the top

of  mount  Everest  are  considerably  lower  than  what  they  are  here,  which  is  why people

require oxygen and you would be severely sick if you were there in that altitudes > 7000 or



6000 metres for considerably long time. So you have different mountain sickness, altitude

sickness arising from this.

So  we  have  considered  2  examples  of  hydrostatic  equilibrium,  let  us  consider  a  third

example,  which  is  astrophysical  in  nature.  The  third  example  of  hydrostatic  equilibrium

where we will apply this concept of hydrostatic equilibrium is the solar corona. So let us take

a look at what we mean by solar corona first.

(Refer Slide Time: 14:55)

The solar corona, this is the picture of the sun taken during the 1999 total solar eclipse. And

the sun here is blocked out by the moon. I have shown you this picture already. Now the

interesting thing here is that when the sun is blocked out, when the sun the dazzling light

from the sun is blocked out, then you see this very faint and tenuous bright thing around the

sun, this is called the corona, it comes from the word crown.

It surrounds the sun, and the radiation from this is 1 million times fainted than the radiation

from sun, the radiation from the sun originates in the photosphere, so it is a million times

fainted. So we can only see this in the visual light, if the sun is blocked out which happens

during the total solar eclipse. So the corona is seen only during the total solar eclipse, that is

the first thing.
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But if instead you were to make an x-ray picture, x-ray image of the sun. This shows you an

x-ray image of the sun taken from a Japanese x-ray satellite. Now in this image, what you

notice is that the sun is darker and the corona which is outside the sun is actually brighter. In

an x-ray you do not need a solar eclipse to see the corona you can see the sun even otherwise

in any x-ray image of the sun that it is the corona which is brighter than the sun itself.
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Now that is very surprising but it is a fact. So the solar corona is extremely tenuous. See the

density is very low, hot gas, hot plasma essentially it is ionised the plasma we mean is ionised

gas. So it is an extremely low density and extremely hot plasma surrounding the sun, that is

called the solar corona. And in visual the radiation is a million times fainter, but in x-ray it is

brighter. 



The temperature at around 1.2 solar radius is a rough value is around 1.4 million Kelvin. And

the  density  is  around  200  million  per  electron,  electron  number  density  is  200  million

particles per cc, and it is mainly electrons and protons, some amount of helium ions also. But

mainly helium, hydrogen, electrons and protons, hydrogen ions. So the sun is surrounded by

this very hot, very low density plasma around the sun which surprisingly is much hotter than

the sun.

And it is a very puzzling matter, how is this solar corona which is around more than a million

Kelvin, how is it hotter than the surface of the sun which is just 5800 Kelvin, what maintains

the corona at higher temperature, it is rather puzzling issue.

(Refer Slide Time: 18:43)

It is now believed that it is possibly originating from small patches of magnetic fields that are

found all  over the sun. The source of the energy is  now believed to be small  patches of

magnetic field found all over the sun. And possibly if you look at the pictures of the sun I

have shown you one, right in the beginning you have these solar flares. These are gas which

come out from the sun.

So you have these solar flares also coming out. Now it is widely believed accepted that the

corona is heated by magnetic fields. When the magnetic fields come out of the sun, these

magnetic fields are carried by the motion of the plasma. Now when the magnetic fields gets

intertwined then what happens, they reconnect, you may have by the motion of the plasma

very complicated pattern of the magnetic fields then they reconnect so that you have very

simple pattern than some magnetic field blob may just separate out.



And during this reconnection energy is pumped in to the plasma outside the sun, that is the

picture. So the flares also do carry out energy from the sun, but it is now believed that the

solar flares which are seen only during the active period of the sun and they do not occur

during passive period of the sun, the sun has these periods. So they are not the source, the

source is possibly the small patches of the magnetic field.

Anyway the general picture is that it is transmitted to the plasma through magnetic forces

which the reconnection of magnetic fields, but it is still remained as a unsolved issue. For our

purposes let us not bother about it, let us not bother about what heats the solar corona, what

we are concerned with is as follows. So we have, let us try to model the solar corona.

(Refer Slide Time: 20:51)

We are going to try make a model for this solar corona. So this is the surface of the sun and at

the radius of the sun r0. We will assume that it has some temperature, very high temperature

T0, and it has some pressure P0, and you can then work out the density. Further we will

assume that it is in hydrostatic equilibrium, so this gas outside the sun we will assume the

plasma is in hydrostatic equilibrium.

And as you go to, as r goes to infinity, we expect the temperature to go to 0, the pressure go

to 0 and everything vanishes. So this is the gas which is there in the hydrostatic equilibrium.

There is a temperature T0 which is very high, which is maintained by the sun at the centre

and the temperature falls off as you go far away at infinity it should be 0, the pressure should

also be 0.



That is the model which was worked out by Parker, famous plasma physicist at the University

of Chicago called Parker, he worked out this model. Now let us go back to our equations of

our hydrostatic equation, so these are the 2 equations that we have. And the first equation

here  everything  varies  only  the  radial  direction  r,  so  the  first  equation  is  that  the  radial

derivative of the pressure del P/del r = we have the density*the body force, the body force

here is acting inwards so we have = rho.

Now let us write rho in terms of the pressure so we know that if you write rho in terms of the

pressure, we have worked it out in the last example. So we can write rho in terms of pressure

so this will be mP/KBT. So we have the mass of the particles by P/KBT. And then we have

the gravitational force, the gravitational force is minus GM/r square. So we have this that is

the first equation.

We also have the condition that the heat loss L should be = 0 for any unit of the fluid, per unit

volume of the fluid should be 0. Let us consider the heat loss first.

(Refer Slide Time: 24:48)

Now if you have a fluid, this  is the fluid let  us say, whose different parts or at  different

temperature or anything like any medium where different parts are at different temperature

we know that heat will flow from the hotter to the cooler part through conduction. And the

conduction current that flows out from this, let us just consider this, this is under temperature

T1, this is at the temperature T2 slightly different.



The conduction current that flows out from this is J, it is proportional to the rate which the

temperature changes with position.  So the conduction current is -K grad the temperature.

There is a temperature difference then you have a conduction current and if it is in opposite

direction as the temperature gradient. And this case, the heat conductivity which is dependent

on the material, so that is the conduction current.

And if I now have a unit small volume here and ask what is the total heat that flows out. Then

you have to take this current and do a surface integral over this and the surface integral can be

converted into a volume integral through Gauss theorem. So we know that the heat loss rate

is essentially the divergence of the conduction current. That is the rate at which the heat is

flowing out.

So in this case different parts of the solar corona, the temperature is going to be hottest near

the  surface and then the  temperature  expected  to  fall  off.  So we are going to  have heat

conduction and we will have a current, but the total heat loss per unit volume should be, total

heat loss should be 0. So it is essentially what it tells us is that in spherical polar coordinates

that the condition is.

Let me first write the condition del dot K grad temperature, this should be = 0. So this is the

condition, further we also know it is known I am not going to go through it here, it is known

that the heat conductivity in a plasma K is proportional to T to the power 5/2, it increases by

temperature, the hotter the plasma, the better it conducts heat. So this is known.

So what it tells us for our problem is that this in spherical polar coordinates this becomes d/dr

r square T to the power 5/2 d/dr T = 0, or what it tells us or we can write this as follows we

can write this as d/d of 1/r, so if you do the d/d of 1/r, then you will get r square/dr with

negative sign, that does not matter because it = 0. So d/d of 1/r of T to the power 7/2 is a

constant, this is what it tells us, this equation will give us this, the solution to this.

So the fact that the energy equation here finally tells us that the temperature scales. So I can

write down the form of the temperature over here. So what it tells us is the temperature T

scales as r to the power -7/2. So let me put it here it implies that the temperature varies with r

as = T0 r0/r, this should be 2/7 not 7/2 right. So the T to the power 7/2 = this so this should be

2/7. Let me just write down the solution here.



Now we have to next use this in this equation. We now know the temperature so we have to

put this back put this into the equation for the pressure, so let us do that.
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So let me do that next, so the Euler equation what it tells us is that dP/dr = let me put all the

factors correctly, so we have m we have a minus sign and then we have g capital M small m

and here we have KB r square/KBT, the temperature we will write as T0, so T0 and we have r

square here and then I will r0 to the power 2/7 and r to the power 2/7. So here I have r0 to the

power 2/7, in the numerator I have r to the power of 2/7 and then we have the pressure itself.

So we can now integrate this equation if I integrate this equation what I will get is dlnP =, and

I have to integrate this term now, this term let us see what the we have GMm/KBT0 and what

is the combined r dependents of this term, let us see. So the combined r dependents of this

term r to the power of minus 12/7, this is 14/7 this is 2/7. So it is r to the power of -12/7 and if

I integrate r to the power of minus 12/7, then I will get 5/7.

So I will have 7/5 here and I will have r to the power of -5/7. So I have r0 to the power of 2/7

and r to the power of 5/7, which we can write the solution straight away now P =, so there

will be a constant when I integrate this which I can write as P0 exponential, I can write this

whole thing as follows, exponential then I have 7/5th GMm/KBT0 and so we have r to the

power of 5/7 here.



So let me write it as r to the power, so what we can do is, we can write this as r0 over here. So

I can write it like this r0/r to the power 5/7-1 * this factor. This -1 into this is a constant,

which I can multiply P0 and it will give me the constant of integration here. So the pressure

can be written like this. That is the solution to this. Now the point to note over here is that if

you, that r=r0 this gives me exactly P=P0.

Here we have put the boundary condition that the temperature goes to 0 as r goes to infinity.

We have imposed the boundary condition that the temperature goes to 0 as r goes to infinity.

So this ensures that T goes to 0 at r tends to infinity. Now we would also like the pressure to

go to 0 as r goes to infinity, but notice here that at r = infinity the pressure does not vanish,

you have a finite value for the pressure.

And this  pressure turns  out  to  be more than the pressure  of  the interstellar  medium.  So

between the stars there is some gas so if this pressure where equal to that the pressure of the

interstellar medium, then we could say that there are equilibrium over there but this pressure

turns out to be considerably more than the interstellar medium. So what Parker showed that

you cannot have a static solution.

If you want where the temperature and pressure both go to and the density everything goes to

0 at infinite. So if you want to hold the solar corona in place in hydrostatic equilibrium, then

there must be something exerting pressure at infinity and we know that there is no such thing

exerting pressure at infinity, so he concluded that the solar corona must be expanding out.
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So this is the proposal made by Parker in 1958 based on this simple calculation. And initially

this  calculation was not accepted.  His paper was actually  rejected from FJ by 2 referees.

Fortunately, Chandrasekar was the editor and he accepted it. But this proposal was verified by

the soviet satellite in 1960, satellite Luna 1 and now it is well known that there is a solar

wind.

So the gas coming out, this gas outside the sun is not in hydrostatic equilibrium it is actually

blowing out and it is made up of electrons and protons like the corona, now at the location of

the  earth,  near  the  location  of  the  earth,  the  number  density  is  around 3-10 particles/cc,

considerably  smaller.  The  flow  speeds  are  of  the  400  kilometres  per  second,  and  the

temperature is around 150,000 Kelvin.
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There are occasional streams which have 750 kilometres per second speed. And there are

impulse events which can have speeds as high as 1000 kilometres per second. Solar winds are

very important for satellite communication and they can also have measureable effects on the

flight paths of the spacecrafts. So wind, constant wind blowing out from the sun.
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This shows you a picture, not a real picture, it is an artist impression of the solar wind. So this

is the sun at the centre of this picture and this is heliosphere, this is the region which is filled

by the solar wind, and here it is actually interacting with the interstellar medium and you

have this bow shock and this whole thing is the heliosphere up to here and this also shows

you the trajectory path of voyager. So the voyager is the man-built satellite that has covered

the largest distance till now, so it is still within the solar wind.
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To put this in scale, this picture shows you the same thing and you can see that the solar wind

extends to hundreds of astronomical units. Now let us get back what we were doing, we were

discussing fluid mechanics and we just took a diversion and discuss the solar corona one

astrophysical  application and its  consequence the solar wind. The solar wind can also be

described in fluid mechanics terms, maybe we shall discuss it later on in this course.



So let us get back to what we were discussing. So we were discussing the fluid equations, and

we until now have discussed the hydrostatic situation. Let us go back to the fluid equations

and apply it to flows where there are velocities, the situation that we consider till now there

were no velocities. Let us no go back and look at fluid flows.
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So before we start discussing flows let me briefly discuss the nature of the velocity field V.

Now it is a well known fact in vector calculus that this vector field V can be decomposed into

2 parts, one part which has a divergence, this has a divergence and another part which has

only a curl, this is called the vorticity. This is usually denoted by omega, the curl of V and it

is called the vorticity and what do these 2 represent.

So we know from Gauss  theorem that  del  dot  V, so the divergence,  if  the divergence is

positive it tells us that, this is my volume. It tells us that fluid is flowing out, a vector field

which looks like this, will have positive divergence. And the opposite situation where it is

converging will have negative divergence, that is the simple application of Gauss theorem.

This can be converted into a surface integral and if we take as infinity as volume it tells us

that the flux out of that volume or into that volume.

So the divergence represents this kind of a motion. Now we also know the Stoke's theorem,

the Stoke's  theorem tell  us that take V dot dl  around a closed loop in the anti-clockwise

direction so this is a loop. Take a close loop like this, and integrate V dot dl around such a



loop. So dl is the tangent vector to the curve. So you integrate this V dot dl and from Stoke's

theorem this = the surface integral of curl of V dot ds, so ds is now pointing inwards.

Sorry this is clockwise, I have drawn the picture incorrectly, it should be other way round

anti-clockwise.  Now ds  points  outwards  and  you  take  the  curl  of  V and  do  dot  ds  and

integrate over this, then whatever it gives you is essentially the circulation the V dot dl. So a

velocity pattern that looks like this goes around in the circle is what is quantified by the

vorticity, the circular motion is also called circulation. This is also called circulation.

This is vorticity and this integral is also called circulation, the surface integral of the vorticity.

So  the  velocity  field  can  be  uniquely  broken  up  into  these  2  parts,  a  part  that  has  the

divergence and a part  that has a  vorticity, the curl.  And conversely if  I  told you these 2

components you could reconstruct the entire vector field. So if I told you what the divergence

was and what the curl, vorticity is.

If I tell you these 2 components, you can reconstruct V. These are all well known things in

vector calculus. Now let us go back to the Euler equation. So this is the Euler equation. It is

often convenient to write it in a slightly different way, so let me do that. So we will use the

vector identity.
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So you can use the identities relating A cross B cross C, which you all know, you can use this

to simplify this expression and if you do that what you will find is that you can write this as

the gradient of half V square. It is just A cross B cross C nothing more, apply that identity. So



this turns out to be the gradient of half V square -V and this is the term that appears in the

Euler equation. So we can replace this in the Euler's equation.

And what we have now is, so that is the Euler equation written in a slightly different way.

Now let us we can do a few things using this, so let us look at flows.
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Let us consider steady flows, what do we mean by a steady flow, steady flow is a situation

where we have a velocity and we have a density but everything is time independent. Now for

steady flows you can define something called streamlines. These are curves, the tangent to

which denotes the direction of the flow, so the velocity, the tangent to which the velocity at

any point is the tangent to this curve.

And you can think of it like the electric field or magnetic field. These are also some field

lines. The velocity of field at any instance is tangent at any position is the tangent to this

curve, these are called streamlines, and the fluid flows along these streamlines. Let us now

integrate this equation. We are considering a steady flow, so there is no del V del T. Let us

integrate this equation along a streamline.

So we are going to integrate this equation along a streamline and let me write it down. Before

we write down let us just look at this term if I integrate this along the stream line, then let me

write down the term. So we have V cross curl of V dot this dot dl, where dl is, that is what we

mean by integrating along a streamline. Now dl is parallel to V at this point. This is V cross

something. So it is obvious that this is going to be 0, this does not contribute.



So what we are left with is basically the integral of this, the other 3 terms, what we have is

that the integral gradient of half V square plus grad P/rho minus F, now we are also going to

assume that the body force f acceleration force per unit mass, can be written as the gradient of

some potential. So we are going to assume that f = - grad phi, could be gravity, could be

electric field something.

So then this becomes +grad phi dot dl = 0. Now these 2 terms are gradients so the dot dl is

essentially just the difference between the velocity and the phi.
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So this tells us that, so when I integrate this I will just get the constant. I will just get the

value of half V square+phi at this value minus the value of half V square+phi at this value. So

what we can say from this is that this + this + the integral grad P/rho dot dl should be a

constant, and this is what is known as Bernoulli's theorem. And if your fluid happens to be

incompressible the density is the same throughout.

Then it simplifies even further what it tells us is that half V square+phi+P/rho is a constant,

which  is  Bernoulli's  theorem.  Let  us  work  out  one  quick  application  of  the  Bernoulli's

theorem before we end today's lecture.
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So we have a container like this with a small outlet over here, and let us say the outlet points

upwards and it is filled with some fluid. So the fluid is going to obviously flow out, it is

going to flow out something like this, then it will fall. And let us say that this difference in

height is H and as the fluid flows out the height, the width is so large let us assume that the

water level here does not fall very appreciably.

And we would like to calculate the velocity of the fluid at this point. So the velocity here is 0,

the atmospheric pressure is P0 let us apply this equation. So at the top of the fluid at the point

A, the velocity is 0 there is a gravitational potential, which is MgH, gravitational potential is

gH and we have the atmospheric pressure/rho. So gH+P/rho, this should be equal to, now at

the outlet over here, at the tip of the outlet we have half V square.

This is the height difference, sorry between the tip of the outlet and this. At the tip of the

outlet we have half V square, this = half V square+phi, so the potential is 0+P0/rho. So what

we see is that these 2 terms cancel out and what we get is that V = the square root of 2gH. So

we have used Bernoulli's theorem to calculate the speed with which the water comes out of

the outlet over there.

So let me end our discussion of fluid mechanics over here and we shall move on to some

other topic in the next class.


