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Welcome,  let  me  remind  you  that  we  were  discussing  the  cosmic  microwave  background

radiation and I started off by telling you that the universe around us is transparent.

(Refer Slide Time: 00:28)

And we know from observation at least that it is transparent to quite a large redshift to distances

comparable to the Hubble length scale and beyond those distances at some high redshift, much >

1, the universe, the radiation is sufficiently hot and the matter is sufficiently dense, so that the

matter  is  completely  ionized  and  the  radiation  and  the  matter  interact  strongly,  are  tightly

coupled and they come to thermal equilibrium. So we were then discussing how to describe such

a radiation in an expanding universe.
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So to do this, we consider the volume L cube and we decomposed the electromagnetic waves

inside this,  we assume periodic  boundary conditions  and we decompose the electromagnetic

waves inside this into modes and any mode which is represented by a wave vector is labeled by 3

integers, an X, Y and Z. Corresponding to every set of integers, there is a mode, okay and the

wave vector, we know from quantum mechanics that particles are represented as waves.

And corresponding to a wave vector k, the particle momentum, we can also calculate the particle

momentum which is h cross*k. So the particle in a mode k has a momentum p which is h cross k

and energy, if the particle is relativistic, we know that the energy is h cross omega where omega

is c*k and if the particle is not relativistic, we also discussed how to calculate this, okay.

Then we introduced the occupation number n which is a function of k or equivalent here function

of p because k and p are equivalent and the occupation number tells us the number of particles

that are there in a particular mode, okay. So in my box, I have decomposed electromagnetic

waves into modes and the occupation number tells us how many particles are there in each mode.
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Then I also told you that if the particles in the box are in thermal equilibrium, the occupation

number is completely determined if I tell you the chemical potential and the temperature, okay.

So  the  thermal  state  is  completely  determined  if  I  tell  you  the  chemical  potential  and  the

temperature and the occupation number is given like this. It is very general for Fermions, Bosons

everything. Photons are particular case which are Bosons and the chemical potential is 0. So this

is occupation number, if it is in thermal equilibrium.

(Refer Slide Time: 03:46)

Now the expansion of the universe occurs on a time scale which is much larger than the time

period  of  the oscillation.  So we can think  of  the expansion as  not  changing the  number  of

particles in each mode but just causing the wavelength or the frequency of the mode to change



slowly, the expansion is a slow process, so the frequency or the wavelength changes slowly and

the wavelength changes slowly proportional to a.

So the rate at which increases is much slower than the rate at which the wave oscillates, okay. So

the expansion causes the frequency to go down or the wavelength to increase. Equivalently, the

wave vector gets scaled like this or the momentum also gets scaled in the same way due to the

expansion,  okay. So  we  learn  how particle  momentum  evolved  under  the  expansion  of  the

universe, okay.

(Refer Slide Time: 04:38)

And the energy and momentum have different relations depending on whether the particle is

relativistic or not relativistic and then we worked out what happens to the occupation number

under the expansion of the universe, okay.
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So essentially if I want to calculate the final occupation number of a mode k, it is = the initial

occupation number of a different mode where the mode is scaled appropriately, okay.

(Refer Slide Time: 05:07)

And based on this, we worked out how the temperature, so the entire occupation number is, the

thermal state is described by a temperature and chemical potential, so we worked out how the

temperature and chemical potential scale for relativistic particles.
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We also worked out how they scale for non-relativistic particles, so this is what happens if the

particles are non-relativistic, okay.

(Refer Slide Time: 05:30)

So  the  temperature  which  describes  the  distribution  and  the  chemical  potential,  scale

proportional  to  1/a  for  relativistic  particles  and  the  scale  as  1/a  square  for  non-relativistic

particles, okay. This is what we had done in the previous class.
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Let me also mention one more thing, the same argument can also be used to calculate the effect

of our motion on the cosmic microwave background radiation, because our motion will cause the

frequency, observed frequency for every mode to be slightly different because of the Doppler

shift and the frequencies will get modified. So the observed frequency will be the frequency in

the frame where the CMBR is isotropic. This will get multiplied by a factor 1+cos theta*V/C,

okay.

Where theta is, this is our direction of power motion and theta is the angle with reference to this.

So if I see a photon coming from this direction and if it has a frequency mu in the frame where

the CMBR is isotropic, then I will observe it at a different frequency given by this. Similarly, the

way vector will also get changed, okay and we know that the occupation number of that mode

will remain unchanged.

The  occupation  number  will  not  change,  that  is  under  this  transformation,  so  if  I  want  to

calculate the occupation number of particle k, so frequency in a particular direction, all that I

have to do is go back and look at the different frequency of the blackbody spectrum. So from

this, you can work out how the temperature of the CMBR, you can see that in the moving frame

of reference,  the spectrum of the radiation  will  still  be a  blackbody spectrum, only that  the

temperature will now be dependent, different for different directions.



I hope the problem is clear. So imagine that in a frame of reference, the CMBR is the same in all

directions. I go to a frame which is moving, each frequency gets modified depending on the

direction I look at. So we can now show, using the same arguments, that the temperature is now

direction dependent. Okay, I leave this to you for you to do as an exercise, okay.

So  what  we  have  been  discussing  till  now  has  been  how  the  chemical  potential  and  the

temperature of the distribution evolved as the universe expands. Let us now see how to use the

distribution function, how to use the occupation numbers.

(Refer Slide Time: 08:51)

So the occupation number N K or NP, if  I  sum this  over all  modes,  so then the modes are

discrete, they are labeled by nx, set of vectors n, nx, ny, nz, which are integers, so each case is

labeled by a set of integers. I sum over all these integers. This will give me the total number of

particles in my box, okay. So this should give me the total number of particles in my box and in

the limit where the box size goes to infinity, this sum I can replace by an integral d cube, so K is

2 pi, so I can replace this by an integral, d cube K L cube by 2 pi cube*N.

This should be = total number of particles. So in the continuum limit, the spacing between the K

has become, L goes to infinity, L becomes extremely large, so the spacing becomes small and I

can write the same sum as an integral like this, okay and since this is spherically symmetric, the

occupation  number  is  a  spherically  symmetric  function  of  K,  I  can  write  this  as  a  integral



multiplying this with h cross, I can write it as dp*p square 4 pi, 4 pi comes from the solid angle

integral in this d cube K, I am writing it in spherical polar coordinates.

There is a 2 pi here, so I have multiplied it with h cross cube to convert it into P. So I have to

divide by h cross cube and h cross cube*2 pi cube will give me h cube. This is = the number

density of particles, okay. Sorry into the occupation number which I keep on forgetting. So there

will be occupation number as a function of P over here, okay. So I get this relation. So let us take,

for example, photons in thermal equilibrium at a temperature T.

(Refer Slide Time: 12:03)

So for photons at thermal equilibrium at temperature T, what this tells us is that the number

density of photons = 4 pi h cube and I have the integral, p square dp divided by exponential

pc/kBT-1. Chemical potential for photons, photons can be destroyed and created. There is no

conservation  number, so the chemical  potential  is  0 and there is  a  factor  of 2  here because

photons have 2 polarizations,  both of which are like independent particles,  so they will both

contribute to the number density. So I will have a factor of 2, okay.

So this allows me to calculate the number density of particles from the occupation number and

the way you handle this, do this, is that you introduce a variable y which is pc/kBT and you write

this integral in terms of y. So what you have is that the number density = 8pi/h cube and I will

write this integral as y square dy e to the power y-1 0 to infinity and I have to put extra factors



because I am converting this p to y.

So I will have kBT/C cube, okay. This quantity in the square brackets over here, so the quantity

in the square brackets only, okay, so this is =, the quantity in the square brackets is twice the

Riemann zeta function evaluated at 3 which is known to have a value 2.404, okay. So what do

we find from here, we find that the number density of particles, of photons, so this is photons, so

number density of photons, gamma, is some constant which I will not write down the value but

the constant involves 8 pi h cube, the Boltzmann constant, the speed of light and 2.404.

So which are all known, okay. So we can determine this and it is proportional to T cube, okay,

photon cube and the temperature we have seen scales as inverse of the scale factor with the

expansion of the universe. So we can write this as 1+z cube into the present value, put in the

present value of the temperature, 2.735. So if you put in the present value of the temperature and

put in all these constant 8 pi h cube kB C cube*this number which is 2.404, what do you get is

that this number density of photons is 420 1+z cube centimeter -3.

So there are 420 CMBR photons in a centimeter cube of volume present for every centimeter

cube of volume in this room or anywhere in the universe, okay, 420 CMBR photons at redshift 0.

If you go to higher redshifts, the scale factor is smaller, so this number goes up as cube, 1+z

cube, okay. So this is how you can calculate the number density of particles if you know that

your particles are in thermal equilibrium at a temperature T and chemical potential 0.

You can also do the same thing for any arbitrary chemical potential, okay. Now this is, if they are

Bosons, you see for Bosons, you have a - sign here. If you had particles which were Fermions

instead of being Bosons, so let me write the same thing for Fermions.
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So for Fermions, the number of particles, if you Fermions with 2 polarizations, okay, then the

number density of particles  would be 3/4 the number density of particles  for photons,  okay.

Assuming that there are 2 polarizations, g=2, okay. So for Fermions, all that you have to do is put

a+ sign here and repeat the same thing. Fermions whose chemical potential is 0. So let me also

put this here n gamma=420 particles 1+z cube centimeter -3, okay.

Now you can repeat the same exercise and calculate the energy of the system.

(Refer Slide Time: 18:41)

How will you calculate the energy of the system, if the particles are relativistic, what you will do

is, you will use this, so the sum over all modes which are labeled by k, which are labeled by



integers and you will have to take the energy of each mode. So the energy of each mode is c into

the corresponding p, so each K value can be converted to a p value, right, c*p for a relativistic

particle is the energy, we are doing it for relativistic particles into the occupation number.

This will give me the total energy. So you could repeat the same thing, write it as an integral over

d cube K d cube p, etc. and what you are led to is that you will have the energy density of

photons.  We have  done  this  exercise  earlier  if  you  remember  when  we  were  considering

blackbody  radiation.  We did  the  integral,  I  told  you  how  to  do  the  integral.  You  will  be

multiplying the whole thing by a factor of c*p.

So you will get a factor of p extra over here, you will have p cube in the integral. You will have a

factor of c also outside. So there will be an extra factor of c and there will be a factor of p cube

here. If you now replace it using y, then you will have kBT/C to the power 4 because you have 3

p for that situation, okay and we have discussed this, so the energy density for photons comes out

to be ab.

This Stefan-Boltzmann constant T to the power 4 which you get by summing up the occupation

number of over the different states and aB, we have already discussed the value too,  I have

already told you what the value is in units of joules per, in the SI units. Let me now write down

the value in a slightly different unit which is useful over here. So the Stefan-Boltzmann constant

can also be expressed as 8.4*10 to the power -33 kg per meter cube T to the power -4.

So what we have done is that we have taken the energy density and divided it by c square and

converted it into mass units, okay. Energy/C square converts it into mass units. So this gives me

the energy density in mass units, kg per meter cube, okay. So we can use this to calculate the

contribution  from the  CMBR to  be  present  density  of  the  universe  and  this  contribution  is

parameterized by using omega gamma0, which is the ratio of the present density in the CMBR to

the critical density which we have already seen, is 3h0 square by 8 pi g.

So you have to just put in this value over here, put in the value of the temperature 2.735 Kelvin

and what you will get is that this comes out to be 2.5*10 to the power -5 h -2, h -2 comes



because of the h0 not square here. So what we see is that at present the CMBR makes a very

small contribution to the total density of the universe, omega matter is somewhere around 0.3 I

told you. Lambda is around 0.7.

So compared with these, the cosmic microwave background radiation makes an extremely small

contribution to the overall density of the universe, it is of the order of 10 to the power -5, 10 to

the power -5 times smaller, okay, but there in mind that with increasing redshift, this contribution

increases proportional to T to the power 4 or 1+z to the power 4. So in the past, the universe was

radiation dominated. Okay this is something we shall come to in the future.

Now let us go back to the picture that we have. So in the picture that we have, the universe is

transparent now. So with the expansion of the universe, the temperature just falls as 1/a. So if

you go back into the  past,  the  temperature  increases  as  1/a  or  1+z proportional  to  1+z and

somewhere over here, the matter and the radiation interacts strongly. Now the thermal nature of

the radiation,  the blackbody spectrum, we have seen will  not change all  the way up to here

because that is what we just saw, all that will happen is that the temperature will change.

The nature of the spectrum will remain same, the temperature will calculate C, temperature is the

only thing that will change. Now the question arises that the matter and the radiation here may

have  different  temperatures.  So  when  the  radiation  interacts  with  the  matter,  I  just  trace  it

backwards, when the radiation interacts with the matter at this place where they both become

sufficiently hot, maybe the thermal nature will be changed.

Because you have a temperature, the CMBR photons at a certain temperature, matter may have a

different temperature, whatever, so how much is the effect of the matter on the CMBR. Now it

turns out, let us just estimate this. So to estimate this, let us calculate the heat capacity of the

CMBR.
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The heat capacity of the CMBR at constant volume, let us take a unit volume of the CMBR and

the heat capacity at a constant volume. So all that we have to do is that we have to differentiate

this with respect to T that will give us the heat capacity del U del T and this is 4aBT gamma

cube. This is for CMBR. Let us now look at the heat capacity of the matter. So let us assume that

the universe is made up of hydrogen, simple assumption.

So for  hydrogen atoms,  the  heat  capacity  at  constant  volume is  3/2,  the  number  density  of

hydrogen nH or  number  density  of  baryons,  of  baryons  we are  assuming that  the  matter  is

entirely hydrogen, so all the baryons are in the form of hydrogen atom, into T. So that is the

internal energies in kBT 3/2nkBT, so if I differentiate with T, I will get 3/2nkB, that is the heat

capacity of an idea gas.

So let us now compare the ratio of these 2 heat capacities. So this is for the matter assuming that

it is all hydrogen. Dark matter does not interact with the CMBR. Let us assume that the baryonic

matter. Baryon, I refer to protons and neutrons, assuming all of it is in hydrogen, okay. So the

ratio of these 2, so for hydrogen and CMBR, this ratio =, so 4aBT cube and here I have, sorry

other way round 1.5nHKB/4aBT cube,  that is  the ratio that  we want to see and the number

density of hydrogen can be calculated.

So we know omega baryons0,  omega  baryon is  the  contribution  to  the  total  density  of  the



universe at  present from baryons.  By baryons,  we refer to protons and neutrons,  okay. Dark

matter obviously does not contribute to this. So the heat capacity of the hydrogen of the matter

that interacts with radiation is omega baryon into, so this will be omega baryon into rho critical

0, the present value of the critical  density divided by the mass of a hydrogen atom which is

known, the mass of a proton, okay.

This is how we can calculate the number density of hydrogen, this is the Boltzmann constant

whose value is known and you put in this value here and if you put in these, then the ratio comes

out to be = 4*10 to the power -9 omega baryons 0 h square. H square is there because I have a

rho critical here, okay and omega baryon 0 h square has a value of around 0.02, even if we

resume it to be 1.

Let us forget about, there is no dark matter, the maximum value this can have is of the order of

unity because the maximum density the universe can have is of the order around critical density,

okay. Even if you take a value 1, now presently observed values is around0.02. If you take a

value around 1, this ratio comes out to be extremely small, okay. So what we learn from this is

that  though the density  of the universe is  here,  is  largely  from matter, the density  from the

CMBR is extremely small.

The heat capacity of the CMBR is much higher than the heat capacity of the matter, okay. And

this ratio does not change with the redshift because this scales as T cube which scales as a-3.

This also scale as a-3 because the number density of particles scales as a-3.
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So this ratio is independent of z. So the ratio remains unchanged all the way over here and when

the CMBR and the matter interact, come to thermal equilibrium, the CMBR loses a very small

fraction of its heat to the matter or gains very little heat from the matter, whichever, which matter

is hotter or cooler. So it is quite clear that the thermal property of the CMBR will not be affected

much even when if it were to interact with the matter, okay because the matter does not contain

much heat, okay.

Now if you repeat the same exercise, calculate the energy density, if you were to calculate the

energy density using Fermions instead of Bosons, then the difference would be again,  so for

Fermions with 0 chemical potential, the difference would be that the occupation number would

have a+ sign and if the occupation number had a+ sign, the difference would be, that okay, so we

know that energy density of Bosons is aBT to the power 4 and if you repeat the same thing for

Fermions.

So for Fermions what you would have to do is, you would have to put a+ sign here and repeat the

same exercise. If you repeat the same exercise, you find that for Fermions, this ratio comes out to

be 7/8, it comes out to be 7/8, energy density comes out to be 7/8 of the photons, okay. Assuming

that again there are 2 polarizations for the Fermions. Okay. Now let us use this, so we have

worked out how the number density of particles for Fermions and Bosons and all of these things.



What values  they have for the CMBR and let  us now look at  some more quantities  for the

CMBR. So let us look at the entropy. The next interesting thing to look at is the entropy per

photon of the CMBR. How much is the entropy per photon of the CMBR. Now the entropy does

not depend on the details of the process, if you have a reversible process. So the expansion of the

universe is a reversible process.

So the entropy, we can calculate the entropy as the dS=dU/T, okay and this comes out to be, so

we have worked out what dU is, it is 4aBT cube dT/T and if you do the integral, you find that the

entropy per unit volume, entropy per unit volume turns out to be 4/3aBT to the power 3 because

there is a 3 here 2 and then if I integrate, now I get 4/3aBT to the power 3, that is the entropy per

unit volume for the CMBR.

No if I look at the ratio of the entropy of the photon per unit volume to the number of photons

per  unit  volume,  both  of  these  we have  seen  scale  proportional  to  T cube.  So this  ratio  is

independent of redshift. With redshift, the T dependence cancels out, the scale factor dependence

cancels out and the T dependence, so this ratio turns out to be 3.6, right. We have already learnt

what aB is, so you can calculate this ratio, it does not change with redshift, it is a constant ratio,

it is constant for the blackbody spectrum actually.

And it has a value 3.6, okay. The temperature dependence cancels out. So this is a number, the

entropy per photon has a value, 3.6.
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Now if you calculate the entropy per Baryon, so the ratio of eta, the ratio of photons of Baryons

to photons number density of Baryons to photons. So this is a number density of Baryons to

photons. Let us calculate this ratio. So we already know how to calculate the number density of

Baryons, omega baryons 0 rho critical 0 by mH, the mass of a hydrogen atom, mass of a proton.

This turns out, you put in the values, this turns out to be 1.24, so this is the number density of

Baryons per centimeter cube. This is number density of Baryons in the universe. So it is quite

clear that this is much smaller than the number density of the CMBR photons in the universe.

The CMBR photon, we have seen there are 420 of them per centimeter cube, the number of

Baryons even if all the metal in the universe, omega is Baryon.

So if the total density of the universe were Baryons, the number density of Baryons would be

much smaller, 10 to the power -7 times smaller at least, okay. So the matter that we see around us

are all made up of Baryons, this paper, pen, hands, everything, protons and neutrons. So the

mean density in the universe is of the order of 10 to the power -7 because I have told you this is

of the order of 0.02.

So the mean density of the universe that you expect in the universe is of the order of 10 to the

power -7 per centimeter cube. So obviously these are not representative parts of the universe,

they are much denser, okay. Whereas CMBR photons, there are 420 of them in 1 centimeter



cube. So this ratio eta is extremely small and it has a value which is 2.7*10 to the power -8

omega Baryon h square, okay, which is independent of redshift because both of them scale as

1+z cube, okay.

So you see what we learn from this, the entropy of the universe is largely in the photon's, the heat

contained in the Baryons is extremely small in the universe at present or at any epoch, the heat

contained in the Baryons is extremely small, the heat entropy is extremely small in the Baryons.

It is mainly in the photons and the entropy per baryon, see the ratio of entropy per photon is fixed

and the ratio of number of Baryons to number of number density photons also is fixed.

So the entropy per Baryon is also fixed independent of redshift all the way to very high redshifts,

okay. Not over all redshifts, this ratio is fixed till the epoch of positron electron annihilation. So

the entropy per Baryon is fixed, it has a fixed value and the fixed value is approximately this

because this ratio is of the order unity, okay, so it has a very large value, inverse of this, not this,

it is the inverse of this, okay.

So the entropy per Baryon is a very large value and it is mainly coming from the CMBR photons

and it remains fixed all the way to a very large redshift till the positron electron annihilation,

okay. So till now we have discussed mainly this part of the evolution. What we see is that there

are CMBR photons, number density of photons we have seen, we have also seen the entropy, the

heat content of these CMBR photons and then if you extrapolate go backwards to higher and

higher redshifts, there is an epoch when they will all in equilibrium, okay.

And once we are in equilibrium, the effect of the matter on the CMBR is negligible, so we can

just continue with the same temperature, thermal distribution even backwards to higher redshifts.
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Now let us shift our attention to the redshift, to epoch when the universe had a temperature > 10

to the power 10 Kelvin. Let us jump. So we are considering an epoch at a very high redshift,

okay.  Temperature  of  the  universe,  if  I  go  to  higher  and  higher  redshifts,  the  temperature

increases. Let us jump to a temperature,  so let us look at the universe at an epoch when the

temperature is 10 to the power 10 Kelvin, okay.

At  these  epochs,  so  you  can  estimate  the  redshift,  quite  simple,  right.  We know  that  the

temperature now is 2.735*1+z = the temperature at any z, arbitrary z. So we can estimate at what

redshift, this is, obviously you cannot see sources from those redshifts. The redshift also is of the

order of 10 to the power 9 or something like that, okay. At these redshifts, the temperature is

adequately high for the CMBR to create positron and electron pairs, produce gamma, okay.

So basically the CMBR is hot enough, so the temperature of the CMBR is > m electron C square.

So the temperature of the energy kBT, sorry, kB into the temperature of the CMBR, the energy

corresponding to that is > the rest mass of the electrons.  So the photons in the CMBR have

adequate energy to produce electron-positron pairs, okay, at temperatures > 10 to the power 10

Kelvin.

Also at these temperatures, we know that there are neutrinos in the universe. So the neutrinos

will also be in equilibrium, will also be produced and they can also produce photons. So you can



have the annihilation producing photons, okay. So you have at these temperatures > 10 to the

power 10 Kelvin, the CMBR is adequately hot so that it can produce electron-positron pairs,

their photons will be in equilibrium with the electron-positron pairs.

Photon is  also  be  in  equilibrium with  the  neutrinos,  okay and they  will  all  be  at  the  same

temperature, let us say it is T, okay, given over here. So at temperatures higher than this, we have

all these 3 things in thermal equilibrium. Now there are 2 things that you required to describe the

entire state. One is this and other is the chemical potential. Now if you have a chemical reaction

like this, so if this is in thermal equilibrium.

Then we know that the chemical potential of the neutrinos + the chemical potential of the anti-

neutrinos, should be = 0, which is the chemical potential of the photons, okay. So in thermal

equilibrium, the chemical potential of the reactants = the chemical potential of the product, okay.

So the sum of these 2 chemical  potential  should be = 0 because photons have no chemical

potential, they can be produced or destroyed. There is no conservation number of photons, okay.

So this tell us that the chemical potential of the neutrino should be = - the chemical potential of

the anti-neutrino, nu bar and we will assume that these are both 0, okay.

(Refer Slide Time: 46:44)

We will also assume that the chemical potential of the electron and the chemical potential of the



positron, e- e+, are also 0, okay. So at these temperatures of 10 to the power 10 Kelvin, the

number density of photons will be 420*1+z to the power, z will be of the order of 10 to the

power  9.  So  the  photons  will  have  an  enormous  number  density,  the  electrons  which  are

Fermions will have a comparable number density at those temperatures.

At present, we have seen that the electrons whose number density is of the order of the number

density of Baryons have a very small number density. So electrons that we have leftover now,

they are insignificant basically at that epoch, okay. You see the chemical potential decides the

number density. So we can safely assume that corresponding to the present electrons that we

have, that the chemical potential is 0.

Strictly speaking, there should be no electrons left, that small fraction, we shall not bother about

at  those epochs,  the small  number density  corresponding to  the number density  of Baryons.

Universe, we know is neutral, so protons and electron number density has to be same, right. So

we will assume that the electron number density that we have now is basically consistent is 0,

okay.

We shall ignore that and so we will assume that the electrons and the positrons, so if you assume

the electron and positron have the equal and opposite chemical  potential,  there total  number

densities will be same but now we see access electron. We will not bother about that, that is what

we are doing basically because this will make a very insignificant contribution at these redshifts,

okay, where the number density of electrons is comparable to the number density of photons.

So let us now start with the universe at somewhere over here in redshifts > 10. At these epochs,

the total energy content of the universe, volume density of energy will have one contribution

from the photons, U gamma, + one contribution from the electrons,  so electrons, there are 2

kinds of particles electrons and positrons, sorry electrons and positrons, each of them have spin

half, so the electron and the positron, they will both contribute.

So there will  be a factor  of 2 basically  and energy density of electrons  which is  a Fermion

because the positrons are also there and then if I have N species of neutrinos, N families of



neutrinos,  so I  will  have  the  number  of  neutrino  families.  We now believe  that  there  are  3

families of neutrinos, the electron neutrino, muon neutrino, and tau neutrino, so N will be 3 into

the energy density of each neutrino, okay. Each neutrino kind has only 2 polarizations.

So this is what we have at some early epoch, okay, that is the energy density of the universe at

some early epoch and it has a temperature T. Let me bring today's discussion to a close here with

this right here and let me recapitulate what we have learnt. So what we have learnt in today's

lecture is that if you go sufficiently back in the past, when the temperature is more than 10 to the

power 10.

The universe is sufficiently hot to produce electron-positron pairs and also adequately hot to

produce electron neutrino and anti-neutrinos and they are all  in thermal  equilibrium at some

temperature T. Further we assume that the chemical potential of each of them is 0.


