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Welcome, let me start of today's class by recapitulating what we have been doing.
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We have considered a universe which is filled with a variety of components each of which has a

density rho i. so i here refers to the different components and we have allowed for the possibility

that these components also exert pressure, so the pressure of the ith component is a constant w

i*c square.

So here allowed for the possibility that the universe has different components which fill it and

each such component is labelled by i different components are labelled by i and each of them has

a density rho and a pressure P which are related through some wi and then we worked out with

the expansion of the universe how does the density change that is the thing that we worked out in

the last class.

And we found that with the expansion of the universe the density evolves as rho i so for the ith

component the density evolves as rho i a to the power-3 (1+wi)=rho i0*a0 to the same power but



we have assume that the scale factor at present has a value 1, so essentially the density of the ith

component  into a  to  the power-3*1+w is  a constant  rho i0  is  the  present  density  of the ith

component okay.

So the scaling behaviour with the expansion of the universe depends on the value of the pressure

how the pressure is related to the density and this is something we worked out in the last class, if

there is no pressure then the sorry there should not be a- sign here it should be a+ sign there is

no-sign here, so as the scale factor increases the density falls and if it is matter the usual dust

with no pressure then the density into a cube is a constant.

If there is a pressure then the you can think of it as the material does work on the expansion in

the expansion of the universe which modifies the behaviour you have to then look at the first law

of thermodynamics and apply the conservation of energy from where we are led to this behaviour

of the density as the universe expands, so these were the 2 things that we did in the right in the

beginning of the last class.

The  other  thing  is  that  we  represented  the  present  value  of  the  density  of  any  of  these

constituents using the density parameter the value of the density parameter at present, so the

density of any component was parameterized like this and this is the ratio of the density of that

particular component to the critical density of the universe at present okay.

So  we  model  this  was  the  basic  idea  that  we  had that  are  the  universe  can  have  different

components each component is the present contribution from each component is parameterized

by  its  density  parameter,  once  you  know  the  present  contribution  you  can  work  out  the

contribution at any ratio any value of the scale factor using this okay, so this tells us how the

density evolves with the expansion of the universe.
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Then  we use  this  to  determine  the  dynamics  of  the  universe  let  me  remind  you  again,  we

determine the equation governing the dynamics of the universe by just considering the equation

of motion of a any galaxy at a distance r the force acting on this is due to the mass inside which

gives rise to the this equation for the scale factor, if the constituent of the universe has pressure

this has to be modified rho has to be replaced by rho+3 P/c square.

So this is the equation that governs the acceleration or de-acceleration of the universe, this is the

equation  that  governs  the  dynamics  of  the  expanding  universe,  so  let  me  write  down  the

equation.
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The equation is a double dot=-4/3 pi G*a into the contribution from all the components in the

universe  each  component  contributes  (1+3wi)  into  the  density  right,  because  I  told  you the

constituent  has  pressure if  the particular  component  has pressure than the density  has to  be

replaced by rho+3 P/c square this comes from Einstein's theory of general relativity okay, so this

is the equation that governs the acceleration or the dynamics of the universe.

And this  equation can also be written in terms of the density parameter  at  present for these

different components, so all that you have to do is replace the density at this is the density at any

arbitrary epoch, these are all functions of time, scale factor is a function of time, density is a

function  of  time,  you  have  to  replace  the  density  in  terms  of  the  present  density  of  that

component and the appropriate power of it.

Once you do this then the equation that you have is a double dot=-H0 square/2, where we have

used the fact that the critical density the present value of the critical density is 3 H0 square/8 pi G

so we have use this over here to replace 4 pi G/3 okay, so we have the ratio of the density to the

critical density at present and you can use that you can use this you will get this relation okay, so

this is essentially the equation that governs the dynamics of the scale factor.

Next  we  integrated  this  equation,  we  multiplied  with  a  dot  and  integrated  this  equation  or

equivalently these equations are same there is no difference okay, we integrated this equation and

let me again remind after we integrated this equation.
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We obtain the following equation a dot/a square this is the Hubble parameter square=H0 square

let me not write H0 here, so we integrated this equation and what we got was this is=8/3 pi G

into some of the different densities +a constant of integration which was 2E/a square okay. So

this is the integral our first integral of this equation multiplied with a dot use the fact that we

know the time dependence of rho for each component.

And you can integrate this equation once you will be led to this we have done this exercise and

this can also be written in the following way H square=this is the Hubble parameters square=H0

square again we have replace 8 pi G/3 in terms of H0 square and the critical density. Sum of all

the components in the universe the corresponding density parameter omega i0*a to the power-3

(1+w i) in this process we have also included this, so what have we done we have also included

this term 2E/a square as a fictitious constituent of the universe.

So 2E/a square we have represented this as a fictitious constituent of the universe, this term

actually corresponds to the curvature of the universe spatial curvature. And we have we are here

representing it as a fictitious density and as the universe expands this density should fall as 1/a

square,  so this  fictitious  density  so we have introduced a  fictitious  density  by hand and the

fictitious density that we have introduced let me put it here, this fictitious density that we have

introduced you can see that you want this to scale as a square as the universe expands.



So the w should be –1/3 okay. So we have introduced this  constant  of integration  we have

represented by a fictitious density called omega k which as w k=-1/3 okay, this is introduced as a

fictitious density, it is not really a density it is a constant of integration which is Einstein's theory

can be associated with spatial curvature okay.

So that has gone into this already, into this so this term has been put inside here, so this term can

also be written as H0 square omega curvature 0 a-2 right, this term falls as a – 2, so this term also

a contribution here in this  equation is  H0 square omega curvature 0 a-2 okay, this  basically

parametrized this constant of integration with this now this is the entire equation the first integral

of the equation that governs the dynamics okay.

Now if you take this equation and look at it as present your led to the relation that H0 square=H0

square into this which essentially tells us that at present that this term must be 1 okay, so we have

the sum of all the different omega i0 should be=1 okay and this is true because we have also

accounted for this constant of integration inside this by introducing a fictitious omega curvature

corresponding to this okay.

So this is the equation these are the 2 equation that we have discussed in the last class and this is

the equation that we finally use in much of cosmology to study the expansion of the universe

okay and the cosmological models that we shall be dealing with mainly has 3 components, 4

components in addition to curvature is one of the them, one of the possibilities, there are other 3

components let me introduce.
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The first one was dust which has no pressure, so this is ordinary matter basically no pressure, so

for  this  a  cube  then  we  had  the  relativistic  particles  for  example  the  cosmic  microwave

background radiation photons and there are other relatives particles also possible which we shall

learn about later, so let us write all of them as so for these particles omega r relativistic particles.

For  example,  CMBR  photons  are  relativistic  particles  the  isotropic  distributed  relativistic

particles, this pressure is 1/3 rho c square and rho relativistic a to the power 4=rho relativistic 0,

then we also talked about the dark energy and there is evidence that such thing exists, the dark

energy of which the cosmological constant is an example is a possibility cosmological constant

this is something for which the I have represented it by lambda in general okay.

So we are going to particularly focus on the cosmological constant there are other possibilities

also  which  go under  the  generic  name of  dark energy okay, so  we are  going to  talk  about

cosmological constant which is represented by lambda this is a constituent of the universe whose

pressure –rho c square okay that is all, that is the basically by and large all that we know about,

so for this rho lambda=rho lambda 0.

In addition, we have the curvature which is not a real component it is the way that we have

introduced these constant of integration in this equation, so let us briefly just look at the solutions

okay, so let us before we look at the solutions let us look at the behaviour of right hand side of



this equation, in a situation where we have a combination of all these terms and we have the

curvature also let me put the curvature here on the same paper.

For curvature this = -1/3 and rho curvature a square is a constant okay, now let us consider

briefly the possibility that our universe has a combination of all 4 of these okay, so the equation

that governs the expansion our universe is essentially this and it has a combination of all 4 of

these okay, so let us look at and try to get a feel for what the general behaviour is going to be

when I have a combination of all 4 of these.
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Let me make a plot of the density contribution to the density in each of these components as a

function of the scale factor and let me make the plot in the log scale, so this is log rho, this is log

a okay, so as the universe expands you are going to a larger and larger scale factor, the density is

going to fall, for relativistic particles okay, for dust for ordinary matter the density will fall as a

to the power 3 okay, for relativistic particles like CMBR the density will fall as a to the power 4.

So  this  is  going  to  fall  the  steepest  of  all  the  components,  so  of  all  the  components  the

contributions from the relativistic particle will fall as steepest okay this is relativistic particles r

and this will have a slope on a log-log it will have a slope of-4 okay, next the matter as the

universe expands the matter density will fall as a to the power –3, so that will be something like

this possibly okay.



And let  us look at the cosmological  constant the cosmological constant will  have a constant

density,  so  that  will  be  somewhere  like  this  lambda  this  is  matter  and  if  you  consider  the

curvature,  if  you  have  a  combination  of  all  4  of  these,  the  curvature  will  fall  somewhere

intermediate to the matter and the cosmological constant.

So you can see the lessons that we learn from this is that in the early universe when the scale

factor  is  very small  the  universe  is  going to  be dominated  by relativistic  particles  radiation

dominated it is going to be radiation dominated okay, and then you are going to have a transition

to  a  matter  dominated  universe  and  if  you had curvature  then  you would  have  a  curvature

dominated universe.

And  finally  if  there  is  a  cosmological  constant  you  would  have  a  cosmological  constant

dominated universe, if you do not have these things then the question does not arise okay.
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So in general you will have a radiation dominated universe to start with relativistic particles, then

you will have a matter dominated universe, then if curvature is there you will have we know the

radiation  and matter  both  exist,  if  you have  a  curvature  dominated  universe,  if  you have  a

curvature component then the curvature will dominate and finally you will have a cosmological

constant if this exists that it will be final thing that dominates the universe okay.



These 2 we know definitely for sure that the exist because we have measured the CMBR and we

see matter around us okay, curvature we do not know, cosmological constant there is evidence

that this is very small if it exists at all and there is evidence that there is a cosmological constant

whatever okay, the behaviour chronologically is going to be like this the early universe will be

dominated by radiation.

And the relative universe if  there is  cosmological  constant  it  will  dominate if  not it  will  be

continued to be matter dominator, simplest model you only have these 2 radiation and matter, so

you have early universe radiation and later on matter okay, so if you have only 2 components

radiation and matter then the evolution early in the universe the radiation dominates later on the

matter dominates.

The transition between these 2 is determined by the value of omega matter and omega radiation

relativistic particles okay, this is the broad behaviour let us now to get a picture of what happens,

let  us  work out  let  me briefly  tell  you how do you determine  the  scale  factor  in  a  general

situation how do you determine the scale factor as a function of time from this equation.

So if you look at this equation this is basically H as a function of a square, H is basically a

function of a, the time dependence comes through a the scale factor in these models okay, so we

have the dynamics of the equation we have integrated it once.
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And the final equation that we obtain is 1/a square da/dt square=H square (a), where H square a

is a known function depending on the different constituents on the universe, depending on the

values of the different omega i’s it is known function okay, so this is the equation that you have

to integrate and this equation is easy to integrate.

So the integral of this equation is that dt=so I can take this on to the what I have to do is I have to

take this on to the right hand side bring this in the denominator so this=da/a H(a), so if you want

to solve for this scale factor at any instant of time, you have to essentially do this integral 0 to a

da prime a prime H(a) prime and there will  be a constant of integration which we set to 0,

because we would like the big bang to occur when t=0 okay.

So to determine a as a function of time essentially what you have to do is you have to integrate

this, this will give you t as a function in terms of a you have to invert this to get a as a function of

t okay, this equation also gives you the age of the universe for any way a value of this scale

factor and the present age of the universe.
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Let me put it here can be determined from this equation t0=0 the present value of the scale factor

is 1, so this can also be used to calculate the present age of the universe, you have to just do this

integral from 0 to 1. So if in your model you know all the different density constituents what are

their contribution at present you can determine everything about the model not only can you

determine the expansion history of the universe how a behaves as a function of time.

You can also determine the present age of the universe okay let us quickly workout very simple

models in general you can do this numerically put this in a computer and you some simple rule

like Simpsons 1 3rd rule or something like that  to do this  integration numerically  it  is  very

straight forward okay, that will give you t as a function of a you can invert that, let us do a few

situations which are simple to get an idea of what happens.

So we have learnt that early in the universe is going to be radiation dominated, so let us look at

the  behaviour  in  a  situation  where  the  matter  cosmological  constant  curvature  all  can  be

neglected, so suppose we are looking at the behaviour of the universe somewhere in this region

where  the  radiation  is  most  dominant  thing  everything  else  makes  a  very  insignificant

contribution early in the universe okay.
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So in such a situation the equation that we have to solve this is radiation dominated universe and

the early universe we know is going to be radiation dominated, because the density of radiation

of relativistic particles will increase as a to the power-4 if I go back in time okay, so let us look at

the behaviour of this equation under that condition.

So we have to basically do this integral where H(a) prime now let us put the form of H(a) prime

for a radiation dominated universe I will have only the omega radiation 0 a to the power-4 okay,

so the integral that I have to do is t=0 to a da prime a prime I have to put H(a) there so this is

going to be H0 square root of omega r0 a to the power-4 so –2, so I have a prime to the power-2

and 1/H0 omega r0 okay.

So we know what this integral is, this integral is a to the power, if I multiplied this these 2 I will

get a to the power-1 so which will be a prime on top if I integrate this I will get a prime square/2,

I will get a square/2 at the limits I will get a square/2 okay, so this integral essentially gives me

t=1/H0 square root of omega r0*a square/2 that is this integral okay or you see that the scale

factor a= so the scale factor is 2/H0 is so I will have 2 over there 2 H0 omega r0 to the power 1/2

t to the power 1/2.

So the crucial point is that for this model the scale factor is proportional to t to the power 1/2

okay and the age of the universe at any instant of time is a dot/a sorry the Hubble parameter at



any instant of time a dot/a so for t to the power 1/2 a dot/a is going to be half 1/t, or t=1/2 H0

okay, so this is the dynamics of the equation in a radiation dominated model, so in the radiation

dominated model the universe expands as t to the power 1/2 okay.

Let me also remind you what it was for the matter dominated model in the matter dominated

universe, we have already worked it out in a matter dominated universe the expansion law is t to

the power 2/3, so you can do this check that you recover the same thing again for the matter

dominated universe, I will not go through it here okay, so for a radiation dominated universe the

expansion is t to the power 1/2.

For a curvature dominated universe there is no gravity so it is just a proportional to t, so we have

already worked out what the expansion factor is for several of these models. So we have now

work out what this here, so this is a (t) is proportional to t to the power of 1/2, a (t) proportional

to t to the power 2/3, a (t) proportional to t in all of these models gravitation causes the universe

to slow down the expansion to slow down, in this model there is no gravity.
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Let us look at a model with just the cosmological constant which is the only one that we have not

discussed as yet, so in a model with a cosmological constant the integral that we have to do we

have H0 H (a),  so the cosmological  constant  here  the  equation  that  you have to  solve  is  a



dot/square=0 H0 square omega lambda 0, for a cosmological constant there is no dependence on

the scale factor, this is the equation that you have to solve.

And the solution to this equation is quite obvious, this equation can be written as this has a

solution that a (t)=t to the power some constant a0 if you wish t to the power H0 square root of

lambda 0*t, it is an exponentially growing solution, so for all of these other situations where

gravity tends to slow down the expansion of the universe we have power law solution for a freely

expanding model it is proportional to t.

Whereas  for  the  cosmological  constant  dominated  model  the  expansion  is  an  exponentially

growing function of time, the scale factor is an exponentially growing function of time okay and

the value of the Hubble parameter H remains constant it does not change with time, so and the

universe has no singularity it has a singularity at t =-infinity which basically means that there is

singularity there is no big bang in this model okay there is no big bang.

It is an ever expanding universe with an exponential okay, so in general okay so this is, so this is

this  summarizes  the  general  behaviour  in  a  model  we  have  where  we  have  the  universe

dominated by radiation, dominated by matter, dominated by the curvature and dominated by the

cosmological constant, so if I have a universe where there is a combination of all of these then in

this space of a universe it will expand as t to the power 1/2.

In the matter dominated phase it will expand as t to the power, let us take a simple model where

there is radiation matter and cosmological constant, in this model you will initially have t to the

power 1/2 and then you will have t to the power 2/3 expansion and finally you will go over to a

phase where you will  have an expansion which is exponential  okay, which is an accelerated

expansion and it is not accelerating.

The cosmological constant we have seen acts to instead of slowing down the expansion it acts to

increase the universe the acceleration of the expansion of the universe which is acceleration so

the  universe  will  then go over  to  a  phase  of  accelerated  expansion okay, so this  is  kind of

behaviour which you have in a model where you have these 3 components.



And in general given this equation all that you have to do the equation that we have just worked

out is integrate this equation incorporating all the different components that we have okay, so I

will give this to you as an assignment work out numerically the solution for a combination of

matter, radiation and the cosmological constant, workout a (t).
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Take for example omega radiation 0 to be of the order of 10 to the power- 5, omega matter 0 to

be of the order of 0.3 and omega lambda 0 to be of the order 0.7 okay, the total sum has to be 1

this is very close to all, work out the behaviour of this scale factor as a function of time for a

cosmological model where you have these H0 rather h.

So this is the homework please work out the expansion history for a model with this, compare it

with the model where instead of this you have omega curvature 0 of the order of 0.7, the total

sum has to be 1 right, so consider 2 different models one where you have these 3, another where

you have this 2 and this compare the behaviour of the expansion of the scale factor in both these

models, so you have to determine okay.

So plot the graphs and compare these models, also determine the age of the universe which I

have told you how you have to determine, assuming H0 h is 0.7 okay. Now let me switch over to

a different topic, so I have told you how to work out the dynamics that I have told you about the



equation that govern the dynamics of the universe and I have also told you how to work out

solutions for these equations, we have worked out some simple examples.

Let us now switch topics and look at the cosmological metric okay, so before we going into the

discussion of cosmological metric I have to tell you a few things, so I hope we all know that in

Einstein's  theory  special  theory  of  relativity  you  have  this  very  important  quantity  call  the

interval between events okay.
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So let me write down the expressions for the line element or interval between events, let me

write down the expression here I shall explain to you what it means briefly okay, this is how you

calculate the line element or interval between 2 events, so in Einstein's theory of relativity we

have  to  think  of  space  time  rather  than  space  itself  okay,  so  we  are  dealing  with  the  3-

dimensional space with coordinates x y and z Cartesian co-ordinate system and there is time.

Now the things that we are dealing with are events, what is an event? We all know what an event

is you are born, the clock ticks one second that is an event okay, so we can represent events on

what is called a space time diagram, in a space time diagram we have the position of the event

along the x-axis and we have the time at which the event took place along the y axis and here we

will only refer to one of the spatial coordinates x, y and z are not being shown.



Let us say that y and z do not change okay, instead of using time we shall measure time in units

of speed, the speed of light okay, so this is an event A it is labeled by the place of the coordinate

of the place where it occurred and the time instant at which it occurred that is an event A, there is

another event let us say B which in this diagram is vertically above A, then let us calculate the

interval for the event AB.

The way you calculate the interval is you evaluate this expression for these 2 events, now you

see for these 2 events they are not separated in space in position they only separated in time, so

for these 2 events the interval delta S square=c square delta t square okay, such events are said to

be time like, this is the time like these are 2 time like, these events are time like okay, and the

delta S square is essentially c square into the time interval between these 2 events.

So these 2 events imagine a person sitting at one place with the and you are sitting at one place,

so this is at t=0, this t=1 time will just evolve for that person in a particular co-ordinate system

okay. Similarly, let me take another event here and call it C, these 2 events AC delta S square is

basically-is negative-delta x square just apply this formula.

So for these 2 events you see that the interval this is called the interval, interval is negative it is

the-the  length  squared  such  2  events  are  said  to  be  space  like  and the  value  of  interval  is

essentially-the distance between these 2 events square, now the utility of the event is apparent

now when you consider something that travels at the speed of light, so imagine a photon being

emitted from here and it travels at the speed of light.

So after a time interval this photon has reached here, this is the event D, so the photon is emitted

here and this is where it is let us say detected by a detector AD, let us look at the separation AD,

for the separation AD you see it is travelling along the x-axis delta x and it is also evolving in

time so there is a delta t, now since it is moving at the speed of light delta x=c delta t.

So for this these 2 events which is basically the propagation of light from here to here delta S

square=0 okay, these are said to be light like or null, so along the propagation of light the interval

is 0 and the interval plays a very important role in special theory of relativity, its value does not



change event if I change go to moving frame of reference etc. etc. now this is briefly what is

meant by an interval.

And the same thing can also be written in spherical polar co-ordinate system, so let me write it

here instead of using a Cartesian co-ordinate system I can also use a spherical polar coordinates

system where this can be written as c square dt square–dr square+r square d theta square+sin

square theta d phi square okay, so I have written the same thing in polar spherical coordinates

that is all okay, which I am sure is familiar this polar coordinates.
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Now here we are looking not only at relativity but we are also interested in Einstein's general

theory of relativity, so in the general theory of relativity the gravity manifest itself as curvature of

space-time, so this is the general theory of relativity, by the curvature of space-time how the way

it  manifests  itself  is  essentially  it  modifies  the  way  in  which  we  calculate  the  interval

corresponding to 2 events.

It modifies the way in which we calculate the interval between 2 events that is how the curvature

of space-time manifests itself in this okay, that is the first point that we have to understand we

have to accept let us say that we will not bother to understand it here we have to accept it that the

curvature of space-time manifest itself as that the way you have to calculate distances becomes

different.



And it is intuitively quite clear and that if something is curved the way you have to calculate

distances is different from the way if I it were you would calculate distances if it were flat okay

that is the main point, so the question is how do we calculate distances in this cosmological space

time, so what is this space time that we are interested in we are interested in a cosmological

space time and the cosmological space time is one that satisfies the cosmological principle.

The cosmological principal is that space is homogeneous and isotropic okay, so if you have a

space-time where this space is homogenous and isotropic that is the cosmological principle not

only is the density of matter isotropic and homogenous, but the gravity rate nuisance also is

homogenous  and isotropic  everything  he  is  homogenous  and isotropic  so the  space  itself  is

highly homogenous and isotropic everything is homogenous and isotropic.
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So the space itself is an homogenous and isotropic in such a space the interval is calculated let

me write down the formula, the way you would calculate the interval, the interval is calculated

according to this formula, so in such a space-time you calculate the interval using this formula

which is very okay this  is  the first  thing this  is  called the FRW metric  Friedman Robertson

Walker metric okay.



So the metric is how you what you used to calculate the distance between 2 coordinates points

and this is referred to as FRW metric, this thing that we wrote down before is the flat Minkowski

metric okay this gets modified to this that is the first thing in for the homogenous and isotropic

universe okay, now you see one should not get very intimidated looking at this, it is not very

difficult to understand.

The let us first see what are the differences with what we are familiar from what we are familiar

with,  so you should compare it  with this,  this  is  the space time this  is the usual space time

interval written in spherical polar coordinates, the difference essentially lies in 2 things there are

2 things which are different one is this a(t) which is the familiar scale factor we have already

encountered, that is the one difference so a(t) here is already familiar to us it is a scale factor.

So x here is the comoving coordinate, so we are working in a comoving coordinate that is quite

clear comoving radius x is the comoving radius, theta and phi are the usual angular coordinates

right, so it is just like this here you have the radius r, here you have the radius x it is comoving

because the whole thing is multiplied by a factor of a square, a*x tells me the length right, so this

is the comoving coordinates system.

The whole length in this coordinates system gets multiplied with a function a square okay, if a is

1 then this looks exactly like this there is one more difference where the difference being I have

this K, K is a constant which can have values -1, 0 and 1, this tells me whether there is if there is

curvature and 0 is no curvature so if you set K=0 you recover back exactly this, if you make the

scale factor 1 okay.

So this is the spatial curvature not the curvature of space-time, the space time is curved already

okay, this is the spatial curvature is the space curved forgot about this part, see this is just the

space, is the space curved that is there in this factor K, L is the radius of the curvature of the

space and it is comoving because we are working in the comoving length scale, so this is the

comoving radius of the curvature okay.



So let  me  bring  today's  lecture  to  a  close  over  here,  in  the  first  part  of  today's  lecture  we

discussed  we  recapitulate  the  dynamics  of  the  expanding  universe  and  then  I  told  you  the

behaviour in general and also told you about the behaviour in for 2 particular new cases which

we are not considered earlier where we have a cosmological constant and the other where we

have only radiation.

In the later part of today's lecture, I introduced the cosmological metric, so this tells you how to

calculate distances, time intervals in this expanding cosmological space-time and I introduced

the terms that you encountered in the metric in this line element, in the next lecture we shall look

at this in more detail and understand what this really tells us.


