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Welcome let us start off today’s class by considering 2 problems.
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In the first problem, we have sphere like this you can think of it as the sun or some other

sphere of gas and the sphere has mass M and radius R and it is in gravitational equilibrium.

So if it  is in equilibrium the sphere satisfies virial theorem. So this sphere is made up to

hydrogen gas we shall assume that it is made up of ionized hydrogen gas and it is in virial

equilibrium.

Now this sphere in virial equilibrium it will have some virial temperature we shall come to us

it has some virial temperature and this sphere we will assume that it also emits radiation from

the surface and the temperature T effective which is a fraction F of the virial temperature. So

the luminosity of this object is 4 pi sigma R square T effective to the power 4. So the first part

of this problem. This is the information given.

So the first part of the problem is to estimate the virial temperature of this object A so let us

call it A. What is the virial temperature of this object? So the virial temperature Tv and how

does this scale with the mass of the object and the radius of the object. Now we know let us



ask let us address this question. So we know that if an object is in virial equilibrium under its

own self gravitational force, then the average kinetic energy = the total energy in magnitude

and it is half the potential energy.

And here we will also assume that the potential energy is – G M square/ R. So we want to

find out how does the virial temperature depend on the mass and the radius of this object. So

we know that in virial equilibrium the kinetic energy here is essentially the thermal energy

Eth. So this is going to be = half of this value. So half of this value means it is going to be G

M square/2 R.

And this is an ideal gas ionized hydrogen. So we know for an ideal gas the thermal energy is

3/2 into the number of particles. The number of particles is going to be the total mass of the

object M/ the mass of the hydrogen atom MH and there is also the mean atomic mass of this

that you have to take into account or another way of thinking of it is that every hydrogen

atom essentially contributes 2 particles not 1.

Because it is ionized or you may say that the mean atomic mass is half. So there will be a

factor of half here that is the number of particles. It is the mass of this object/half the mass of

the  hydrogen  atom.  So  NK  the  Boltzmann  factor  KB *  T virial  that  is  how  the  virial

temperature is defined. The internal energy is written in terms of the virial temperature in this

way. It is basically 3/2 NKT. N is the number of particles KB is the Boltzmann constant *T.

So this straight away gives us the dependence of the virial temperature on the mass and the

radius. So the virial temperature is equal to so let see how much is it equal. So the virial

temperature = one factor of M cancels out. It is = G M * the mass of the hydrogen atom.

These factors of 2 will cancel out and if I bring this on to the left hand side I will get a factor

of 6.

So this divided by 6 * Boltzmann factor KB * R. I hope we have got it correct let us just

check. So that is the virial temperature it is essentially proportional to the mass of the object

and inversely proportional to the radius of the object. So that is the first part. The second part

we would like to calculate the luminosity of this object.

And I have told you that this object we are assuming that this object emits from its surface as



if it were a black body of temperature of this effective temperature which is a fraction some

fraction some unknown fraction F of its virial temperature. In principal if it is optically thick

and  the  temperature  is  the  same  throughout  then  it  will  be  exactly  equal  to  the  virial

temperature, but it may not be exactly optically thick. 

So let us just use this and see how the luminosity depends on the mass of the object and the

radius for such an object.
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So the luminosity L=4 pi. So let me just keep the factor of 4 pi as it is. 4 pi and then we have

this Stefan-Boltzmann constant sigma and then let me write those factors down 4 pi sigma.

And then we have R square then we have this T effective to the power 4 which we can write

in terms of the virial temperature. So the luminosity can be written as some constant C whose

value you can work out by taking all the coefficients over here all the constant * F to the

power 4.

And what is the dependence on the mass we are interested in the dependence on the mass and

the radius. So the dependence on the mass is M to the power 4/R square. Okay so that is the

second part  of the problem. The luminosity is proportional  to the mass to the power 4/R

square.  The  thermal  energy  is  proportional  to  the  mass  square/the  radius.  The  virial

temperature mass/R and the luminosity mass to the power 4/R square.

Now this object when it radiates it loses energy. So the total energy and the thermal energy

are equal  in magnitude  and the thermal  energy will  increase if  it  losses  energy we have



already discuss this. So we can now equate the rate of loss in energy to the luminosity. So let

us do that and what we get is D/DT the rate at which the thermal energy is lost and the

thermal energy is G M square/2 R. Now when the energy is lose it is only R which is going to

change the mass remains fixed.

So it is essentially 1/R and this is =C F to the power 4 M to the power 4/R square. So I can

absorb these coefficients G M square/R * this constant C and redefine another so I can have

another constant which is 2 C/G basically. 2 C/G.
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And what I will get is that D/DT of R -1/R square =so this was C let us call that give it some

other name let us call it C bar this is = C bar and we now have M square over here F to the

power 4 M square/ R square. So this 1/R square cancels out and the problem is that when this

so the question is as follows when this losses energy its thermal energy is going to increase,

its potential energy is going to get lower and lower.

So this thing essentially contracts and we want to find the rates at which it contracts. We want

to find the solution to R as a function of time by solving this equation. So which now we can

do straight away it is quite simple. So R =R0 which is a starting value of the radius –C bar F

to the power 4 M square *T. So that is how the radius changes with time where you can work

out exactly what the numerical value corresponding to C bar is by just backtracking a little.

And M is the mass of the object. F is the relation between the effective temperature and the

virial temperature T is time. So at time T =0 the object has some radius R0. And R will be the



radius at some later time T. So the object essentially contracts and the entire object according

to this collapses at a time T =R0/C bar F to the power 4 M square. So having done this let me

now leave the remaining problem to you.
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So you have to estimate the rest of the problem is left for you, you have to estimate the time it

takes and object of mass of the sun and the radius of the sun to collapse. How much time in

this model how much time will it take to collapse to R =0? Assuming F=1. When you do this

you will find that this is ridiculously small time. So the question is then why how come you

get such a ridiculously small time for such a massive object to radiate away all its energy.

And you can actually work out the reason if you estimate what the starting T virial is. If you

estimate the virial temperature to start with you will find that this is much higher than the

actual surface temperature of the sun. So to get an idea of what would happen to the sun

about the Kelvin-Helmholtz time scale for the sun. So to get an idea what would happen for

the sun if there was no source of nuclear energy you would have to change the value of F so

change F.

So change F so that the effective temperature comes out comparable to 5800 Kelvin which

we know to be the surface temperature of the sun and again estimate the time it would take to

collapse. So these are parts of the problem that I leave for you to work out. I have done a part

of the problem. I leave the rest of the problem for you to work out. You have to essentially

put a numerical values and go through this exercise. I hope the problem is clear.



The next problem that I am going to discuss is again I have mentioned this problem it is not

something new. The problem is as follows.
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So the previous problem we had to do with the virial theorem. The next problem has to do

with hydrogen burning. So the problem again has 2 parts. The first part we know that the

temperature at the core of the sun is around 1.6 *10 to the power 7 Kelvin. So let us estimate

the  typical  the  average  temperature,  average  energy  of  a  particle  of  a  proton  at  this

temperature.

And we know from kinetic  theory that the average energy of a proton of particle  at  this

temperature is 3/2. So the typical energy of such a particle kinetic energy is of the order of

3/2 the Boltzmann factor * the temperature. So this will give us so the particles inside have a

Maxwell Boltzmann distribution of velocities and so the kinetic energy also have to spread

the typical energy kinetic energy is of the order of 3/2 KbT the average kinetic energy and we

put in the values.

So 3/2*1.38 * 10 to the power -23 that is the Boltzmann factor * 1.6 * 10 to the power 7 that

is the value of the temperature and this value if you put in these values and do the calculation

it comes out to be 3.2 * 10 to the power -16 joules that is the kinetic energy of the protons.
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Now the next question is that for the nuclear fusion for hydrogen burning to occur. The first

step is the PP collision. So we need 2 protons to collide to form a deuteron. So we have 2

protons and we know that at large scales there is the coulomb repulsion between any 2 charge

particles which have the same charge and it is only if they can approach within a distance R0

of the order of 1.4 *10 to the power -15 meters of this order will the strong interaction come

into play.

And they will then be able to merge and form a deuteron. So the question is what is the

potential  energy of  2 protons  at  this  distance.  So the kinetic  energy has to  equal  to  this

amount if you want the protons to approach to overcome the coulomb potential and approach

each other to such a small distance where they can become bound by the strong interaction.

So let us estimate the potential energy of this. 

So the potential energy of such a configuration is -1/4 pi epsilon 0 * the charge of the proton

which is the same as the charge of the electron square E square/R0. So here again let us put in

the values and we have the 1.6 * 10 to the power -19 that is the charge of the proton square in

all in SI units so that will be in coulomb/4 pi * epsilon 0 which has a value 8.9 10 to the

power -12 * the distance which is 1.4 * 10 to the power -15 all in SI units. 

So you put in these numbers and the potential energy comes out to be of the order of -1.6 *

10 to the power -13 joules.  So this  simple estimate  you can compare  the typical  kinetic

energy is 10 to the power -16 whereas the potential energy is 10 to the power -13. So it is

roughly the kinetic energy is roughly a 1000 times less and this is the problem which I had



mentioned earlier. 

So inside the sun the protons do not posses adequate kinetic energy for this collision to occur

and for the reaction to proceed. If you think of them as classical particles, but when you treat

them as waves there is a probability  that  they can tunnel through his barrier  and for the

reaction  to  take  place  and  it  is  only  because  of  this  that  you  have  the  nuclear  burning

hydrogen burning going on in the center of the sun.
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So having discussed these 2 problems let  me now move on to the topic of remainder  of

today’s class the remaining part of today class. So we are going to now move on to discussing

the structure of stars’ stellar structure. So this is what is called stellar structure. So we already

have some idea about this. Now in today’s class I am going to introduce the equations the

basic equation that govern this so the structure of a star.

We think of star as a ball of gas a spherical ball of gas that is the starting point. So every star

is essentially a spherical structure like this self gravitating spherical structure. So it is bound

by its own gravitational force and it is by and large most stars are hot gas their plasma ionized

hot gas. There are 4 equations governing the structure of a star. The first equation is the

equation of hydrostatic equilibrium.

So it is the equation of hydrostatic equilibrium and so we assume that the star is in a static

configuration. It is neither expanding nor contracting. We also ignore the rotation of the star

and for such fluid we know that for any part of the fluid the pressure gradient across the fluid



will balance the acceleration or the force per unit mass that is the main consideration. So if I

consider any small element of this element the pressure gradient across the fluid must balance

the force per unit mass of the fluid.

So here this fluid element every fluid element is being pulled inward by gravity. So this is

spherically  symmetric  and  every  fluid  element  is  being  pulled  inwards  by  gravity.  The

gravitational  acceleration  acts  to  pull  these  fluid  elements  inwards.  So there  has  to  be a

pressure gradient. So the pressure inside has to be more and the pressure outside has to be

somewhat has to be somewhat smaller and the difference in this pressures is what balances

the gravitational attraction.

There  is  a  factor  of  rho which  I  have  missed  out.  So it  is  1/rho.  So everything  here  is

spherically symmetric. So things are only function of the distance from the center the whole

thing is assumed to be spherically symmetric. So we can now write this equation as DP/DR

-1/rho + the acceleration per unit mass. So the question is how much is the acceleration per

unit mass.

Now we know that if I have spherically symmetry only the mass inside this the total mass

inside this is going to contribute to the acceleration of this fluid element. So this is going to

be = –the gravitational acceleration is GMR/R square that is = 0. So we finally have the first

equation which is essentially this and I will write it in a slightly different way. So the final

equation that is the equation of hydrostatic equilibrium is essentially DP/DR = –GMR*rho/R

square. Let me tell you that MR is the mass within.

So we are looking at a distance R away from the center and MR is the mass.
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Let me draw a picture which we can use repeatedly now. So this  is  my star and we are

looking at a distance R from the center and M of R is the mass within this sphere. So that is

all  that contributes to the gravitational acceleration over here and this is the equation for

hydrostatic equilibrium till that is the first equation.
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The second equation that governs stellar structure is the mass distribution equation. So the

mass we know the mass within a sphere of radius R we know that this is the integral of the

density  4 pi R prime square * rho R prime DR prime.  So what we are doing is  we are

considering shells like this. So the thickness of such a shell is DR prime and the mass inside

that is 4 pi R prime square rho R prime.

So this equation can also be written in differential form which is DMR/DR =4 pi R square



rho R. So this is the equation that governs the mass distribution.
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So the third equation in a stellar structure is the flow of energy. So it is essentially the flow of

energy. So let us go back to this picture. Let us say that the luminosity at a distance R is L of

R and the luminosity at a distance R+delta R is L of R+delta R. So the difference so let us just

calculate the difference in flux between energy flux between here and here. So the difference

in energy flux between this and this is the luminosity.

You can calculate  the difference in luminosity. The luminosity  is  a total  radiation that is

coming out from this surface. So the difference in the total radiation coming out from these 2

surfaces that is the energy which is generated in the shell and the energy that is generated in

the shell we write as the volume of this shell. So the volume of this shell is 4 pi R square *

delta R * the density that will give you the mass inside this shell.

So into the density rho R * the energy generation rate or the emissivity of this material so

epsilon R. So that is the amount of energy generated per unit mass of this material. So this

gives us the equation that DL/DR how does the luminosity change as we go out from the sun

and DL/DR = 4 pi R square rho R * epsilon R where epsilon R is the emissivity or the energy

generation rate.

And this is something that we discussed just in the last class in the previous lecture where we

discuss nuclear burning. So I told you that the energy generation rate is proportional to rho.

So epsilon this energy generation rate is proportional to the density *T to the power 4 for the



PP chain. So the energy generation mechanism in any star is through nuclear burning that is

the only source of energy generation.

And we saw that there are 2 processes by which this nuclear burning can occur. One is the PP

chain where 2 hydrogen 2 protons collide to give you helium 4 and the energy generation rate

is proportional to the density *T to the power 4 okay this is the rate per unit mass that is

proportional to density to the power 4. There was another mechanism which was a CNO

cycle and for the CNO cycle.

This was proportional to rho T to the power 15 I told you this also. So when you solve for the

stellar structure one has to also take into account the fact that there is energy being generated

in different parts of the stars. The energy generation rate is more effective in the center where

the density is high and the temperature is high. It is less effective in the outer part where the

temperature is low and the density is also low. 

So  one  has  to  simultaneously  incorporate  this  and  that  goes  into  determining  how  the

luminosity changes as we go away from the center that goes into here. And we have written

this as a function of R because both the density and the temperature are just function of R. In

reality, it is essentially if you look at the physics behind it is a function of the density and the

temperature.

But since the density and the temperature are themselves functions of R when you solve the

stellar structure you have to essentially can think of it as a function of R. So that is the third

equation.
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The fourth equation is the temperature so we need to know the temperature profile. So how

does  the  temperature  change  inside  the  sun  and  this  how  the  temperature  changes  is

essentially  determined  by  the  energy  transport  mechanism.  So  this  is  determined  by  the

energy transport  mechanism and there are  2 energy transport  mechanisms that  are  active

inside stars.

The first one is radiation so you can have radiative transport. So in radiative transport what

happens is that the photons they get absorbed and reemitted and they slowly make their way

across the sun and they diffuse. So this is a diffusion process. It is a random walk we have

discuss this. So the photons slowly make their way it is a slow progress through the sun. This

is the radiative transport.

There is another mechanism which can also at play inside the stars the other one is convective

transport.  In convective  transport  fluid elements  move and these fluid elements  carry the

energy and so the energy transport on the temperature distribution in the sun, the temperature

gradient are determined by which of these 2 processes is active it depends on that and you

can have 2 possibilities.

So the radiation you can have energy being transported through radiation or you could have

energy  being  transported  by  the  motion  of  fluid  elements  themselves.  So  there  is  a

competition between these 2 mechanism and we shall discuss the criteria which one will be

operational, but first let us just look at this. So in today lecture we shall just consider the

radiative transport.
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So we proceed as follows. Let us consider 2 shell of the fluid the 2 different radii distance

delta R apart where delta R is the mean free path of the photon inside the sun and the mean

free path we know the mean free path in  any medium. The mean free path we know is

1/absorption coefficient alpha or we can write it as 1 by the absorptivity or opacity into the

density.

So this is the absorption coefficient per unit volume that is how we had introduced it alpha

and Kappa is per unit mass. Kappa is also called the opacity and it is related to this alpha

which we have been using and which is the absorption coefficient through the density. So let

us consider 2 regions, 2 shells a shell of thickness delta R which is of the order of the mean

free path inside the star.

So you can think of the photon essentially propagating from here to here and then getting

absorbed or scattered. Now let us calculate the energy flux which is incident which is being

radiated by this surface. The energy flux being radiated out from this surface is we will call

this 1, we will call this 2. The temperature here is T1, the temperature here is T2. So the

energy flux that is being radiated out is 4 pi flux is going to be sigma T1 to the power 4 that is

the flux.

Per unit area how much energy is going outward that is 4 sigma T1 to the power 4. The

energy of flux which is incident in this direction from the upper surface is going to be T2 to

the power 4. So the difference of these 2 where T2<T1 we know this. As you go out the



temperature goes down. So the difference in these 2 gives me the net outward flux which is

the luminosity.

So if I multiply this with the area 4 pi R square I get the luminosity at a distance R. So the

photon which leaves from here propagates only this distance typically and then get absorbed

again. The photon that leaves from here it propagates this distance and then get absorbed

again and the net flux over here, net luminosity over here is the difference in flux into the

area which is 4 pi R square*sigma the Stefan–Boltzmann constant T1 to the power 4 –T2 to

the power 4 and T1> T2.

So  this  is  an  estimate  of  the  flux  net  luminosity  at  any  point.  So  we  can  write  this  as

approximately =4 pi R square * sigma*the derivative of T2 to the power 4 * delta R that will

be an estimate of this quantity and the mean free path we know is much smaller than the

radius of the sun is very small is of the order of millimeter so this gives us the luminosity and

we can invert this relation.

So let me invert this relation to get the temperature gradient inside the star.
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So the  temperature  gradient  inside  the  star  is  equal  to  so  what  we are  doing is  we are

differentiating this and then taking all the factors on to that side. So this will be equal to the

luminosity at that point divided by I will get a factor of 4 when I differentiate this. So I will

have 16 pi R square the Stefan–Boltzmann constant T cube. So let me write it like this 16 pi

sigma R square T cube.



And then I have 1/delta R and delta R we know is the mean free path which is the 1 / Kappa

rho.  So  we have  1/delta  R so  we have  to  multiply  with  kappa  and  rho.  This  gives  the

temperature gradient in the star. This is an approximate formula that we have derived. All

calculation here has been rather approximate if you do a more detailed exact calculation what

you get, this is approximate.

If you do a more detailed calculation what you get instead of 1/16 you get 3/64 pi sigma R

square T cube L R kappa rho. Okay this is the temperature gradient. So this completes the

4equations which one has to solve in order to determine the structure inside the star. So let me

just tell you what this equation tell us. This equation essentially tells us he can look at this

equation. 

So if you want to have a higher luminosity at a certain point in the star. So you want the

luminosity here to be high then the temperature gradient over here should also be large or

given the same luminosity if the opacity increases then again the temperature gradient has to

be  larger  for  the  same  luminosity  at  this  point.  If  you  have  a  higher  opacity,  then  the

temperature gradient has to be larger. 

Let me now summarize what we have done to determine these structure of a star one has to

simultaneously solve these 4 equations for the material inside the star. So we today discussed

only one energy transport mechanism in the next class we shall discuss about convection and

then also discuss how one goes about solving the stellar structure.


