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Welcome.  In the last  class,  we were studying what we can possibly learn by looking at  the

electromagnetic radiation from the sun. And what we saw was that the electromagnetic radiation

from the sun peaks at around 5800 at around no it has an effective temperature at 5800 Kelvin

and if you look at the spectrum it peaks at around yellow and in the region around the peak

where the bulk of the radiation energy is localized in frequency.

It  is well-described by a Black-body Planckian spectrum with a temperature of around 5800

Kelvin. That was the first thing.
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The  second  thing  that  we learnt  was  that  the  radiation  originates  from a  thin  shell,  well  it

originated from a surface it affectively originates from a surface where the optical depth reaches

unity. So we are looking from here and the radiation originates from a surface of the sun inside

the sun where the optical depth is of the order of unity. So it originates from a thin shell around

this around this.



And the thickness of this is extremely small it is around 0.1% of the total radius of the sun, and

this is called the Photosphere. So the Photosphere is where the optical depth reaches 1. So that

radiation receives originates from here and there is evidence in the radiation that the temperature

of the sun increases as you go inward. So the temperature increases as you go inside the sun. So

there is evidence of the temperature increases as you go in. 

These was the 3 things that we learnt in the last class. Today let us try to work out what the

interior of the sun looks like. Okay. So we start off by considering this to be a spherical mass

distribution some gas, okay which is in hydrostatic equilibrium. And we have written down the

fluid  equations  if  you remember  and in  the situation  which  you use  to  describe  hydrostatic

equilibrium the equations are quite simple so the equation there is only--
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So in hydrostatic equilibrium the pressure gradient divided by the density should be equal to

rather this + the force per unit mass f, these 2 should be balanced. Okay. Now the situation that

we are  dealing  with  the  force  per  unit  mass  on any element  of  this  fluid  is  essentially  the

gravitational force. So we can represent gravitational force in terms of a potential; so this is -

grad phi where the potential satisfies the Poisson equation. 

So inside the sun the pressure gradient essentially balances the gravitational attraction of the

material  inside. So if you consider this element of the fluid the pressure gradient across this



balances the gravitational attraction of all the material inside this field. Okay, which is what is

there in this equation, it is a self-gravitating system. Now in order to solve this equation we need

to know the density is, we need some relation since there are 2 unknowns there is the pressure

and there is the density. 

We shall start off with a very simple assumption our assumptions here is that the density inside

the sun is a constant. So we are going to make the simplifying assumption that rho is constant. So

let us estimate the value of the density of the-- the mean density of the sun. And we will assume

that this value is there throughout. It is a rather simplifying assumption but we can make some

progress with this. 

So this value of the mean density is the mass of the sun which I have already told you the value

divided by the volume of the sun which is 4/3 pi, and I have already given you these values; so

we will assume that this density holds throughout the entire sun. Okay. And if you put in the

values, so this is 2*10 to the power 30 kilos this is 6.96*10 to the power 8 meters, I have already

told these values. 

So if you put in all of these numbers the density the mean density of the sun comes out to be 1.4;

let me express it in grams per cc, grams per centimetre cube. Okay. So the density of the sun we

see is comparable to the density of water, right. For comparison let me also tell you the density

of the earth, this is for the sun. The density of earth is around 5.5 grams per cc centimetre cube.

Okay. So it is roughly 4 times the dense the earth. Okay. 

So density of the sun, the mean density is comparable to that of water. And you might not think

that this is some kind of a liquid but it is not so this is a mainly made of a hydrogen. And the

temperature  inside is  sufficient  temperature  and the density  inside is  sufficient  to  ionize  the

hydrogen, so this is essentially a plasma where you have the charge the protons and the electrons

free inside this. 

The total charge is 0 but the protons and the electrons they are not bound to each other they are

free. And they both behave like perfect gases. That is the situation. Okay. So we are going to



assume that the average density inside is this and it is a constant. So with this assumption let us

go ahead and try to solve this equation. So solving this equation now is quite straightforward, we

also have spherical symmetry, so we will just take multiply this over here.
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And what we have then is grad p =, so grad p = this-- if I put it here the minus sign s cancels out

then I take it onto the right hand side, so this is = rho*grad phi with the minus sign. Further I

could take a diversion of this and we are led to the equation that del squared p. Now we have

assumed that rho is a constant so I can take it outside so I have del squared of phi so this is = -4

pi G rho square. 

And we can write this in spherical polar coordinates so if I write it in spherical polar coordinates

what I have is one/R squared, okay. So this is-- we have to now solve the equation. We are

working spherical polar coordinates. So we integrate this equation from this inside towards out

and if you integrate this what you get is this will be r squared here, 1/r squared and d/dr squared,

so this is the Laplacian operator in spherical polar coordinates. Okay. 

So what we can do now is we can multiply this with r square and integrate it ones so if I integrate

it ones I will get r cube/3, so what this gives us finally then is r square dr, p = -4/3 pi G rho

square r cube. Right. So what I have done is taken the r square there and integrated over r so that

gives me r cube/3. Then this I can again divide by r square and so that will give me a factor of r



and then I integrate it so it will give me half r square, so finally the pressure = - 4/3 pi G rho

sorry the r square and this will not be 4 it will be 2. 

So it is – 2/3 pi G rho square, r square + a constant of integration K. Right, that is the pressure

inside the sun in this simple model. Okay. Now let me ask the question, what is the pressure at

the surface of the sun? We have to put some boundary condition, so we can measure things at the

surface and let us ask the question what is the pressure at the surface of the sun. Now obviously

the pressure outside is 0.

So the pressure at the surface of the sun, has to be 0 that sets the boundary condition. So at r = r

nought p = 0 at r = the radius of the sun. And we use this to determine the constant k. So with

this imposing this boundary condition what you have is that the pressure... 
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P = 2/3 pi, okay. Further, it is convenient to express this density in units of the total solar mass.

Okay. So this then can be written as 2/3 pi G M sun by 4/3 pi R sun cube that is the density the

square of this that is the density. So we have 2/3 pi G rho squared 4/3, 2/3 pi squared and then we

impose the boundary condition and we have term, so, right. So this is the pressure inside the sun. 

So you can see that this all of these into one into constant of integration and this term into all of

this is essentially just this. So we have written it like this, and you can it is now very clear that



when the radius r goes to the radius of the sun the pressure vanishes. Okay. Now we will use this

to calculate the pressure at the centre of the sun. We want to calculate it is inside the sun so let us

use this to estimate what the pressure at the centre is. Okay. 

So the pressure at the centre at the core of the sun according to this then has a value let us see

how much it comes out to be. So you have 2/3s here and in the denominator you have 16/9, so a

factor of 3 remains in the numerator, and here you have 16 and here you have 2 so factor of 8

remains here and you have a factor of pi also in the denominator, so that takes care of all the

numerical coefficients.

And then we have G M squared the mass of the sun squared/r to the power of so here we have r

to the power of 6 the radius of the sun and here we have the radius of the sun square so this is R

sun to the power of 4 that is the pressure at the core of the sun using this simple the simple

approximation assumption that the density is constant throughout. Okay. So we have an estimate

for the pressure at the centre of the sun and it comes out.

It is expressed in terms of just the Newtonian the universal gravitational constant the mass of the

sun and the radius of the sun, it depends on just 3 and there is a numerical coefficient outside. So

you now put in the values we can put in the values of G the mass of the sun and the radius of the

sun and if you put in the values the-- we get an estimate of the pressure at the centre of the sun

and this comes out to be = 14 Newton’s per meter square.

I will ask you to yourself check this put in the numbers and just calculate for yourself, check it

for yourself. Okay. So this is an estimate of the pressure at the centre of the sun. Now I should

point  out  that  in  this  expression  we have  made  some drastic  assumptions  and these  drastic

assumptions give us this result. Now in this result, this numerical factor depends crucially on the

assumptions that you make. 

If you had assumed some density profile then this numerical factor would have been different,

okay. So a more realistic estimate will give us some other numerical factor over here but this part

will more or less would be the same. Okay. So this is an order of magnitude estimate of the



pressure, some real-- so you should not take this very it is an order of magnitude estimate of the

pressure. Say it will be within 10 or 100 times the actual pressure inside the sun. 

But it gives us some feel for what the pressure. Okay. And this is the value that you get for

comparison let  us also estimate the pressure at  the surface of the at  the earth surface.  Earth

surface,  we know the pressure is  equivalent  to 76 centimetres  of mercury and we know the

density of mercury so we can calculate the pressure at the surface of the earth and the value

comes out to be of the order of the 10 to the power 5 Newton’s per meter square. 

That is the pressure on the surface of the earth. So you see there is considerably larger, many

orders  of  magnitude  larger  than  the  pressure  at  the  surface  of  the  earth.  It  is  an  enormous

pressure that you have at the centre of the sun. Basically the pressure is balancing is due to the

entire weight the gravitational is balancing the gravitational of attraction of the entire mass that is

above this. 

Just like you calculate the pressure at the earth surface you take the air column above the earth

and the weight of that is the pressure, okay similarly here you do exactly the same thing except

that the gravitational acceleration also changes without the density could also possibly change

with that we have not taken that into account over here. Okay. Now, next we would also like to

estimate the temperature at the centre of the sun. Okay. 

Now to estimate the temperature at the centre of the sun that is, so we will assume that the we

have pure hydrogen,  now we know that  the  sun is  actually  a  combination  of  hydrogen and

helium mainly; there are other elements but they contribute in significantly to the density. The

density of hydrogen is also considerably larger than the density of helium so we shall for that—

for the approximations here ignore helium and just proceed with hydrogen. Okay. 
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So for any gas if it is an ideal gas then the pressure and the temperature are related as follows. It

is--  the  pressure  is  the  number  density  of  particles  into  the  Boltzmann  constant  into  the

temperature. So if you know the pressure and if you know the number density you can determine

the temperature. Okay. Now the number density in is the mass density divided by the mass of

individual particles. Okay. 

And if I have many species of particles I have to then add up the contribution from each of these

species. Now we write this number density of the particles in as the density of the gas divided by

the mass of one hydrogen atom, so if it were purely hydrogen atoms this is the number density

that you would have into this factor Mu which is the mean atomic weight of the constituents,

okay so Mu is the mean atomic weight, right. 

So essentially what we have done is we have written the sum rho I, mi = the sum, Rho – I just

give the total density divided by mH*Mu. That is what we have done. The total-- if there are

many components the sum of each the density of all the components is the total density rho. And

the number density we have expressed like this, so it is the total density divided by the mass of

hydrogen atom divided by the mean atomic weight, okay.

So we have just expressed this term like this, right. So from here we see that Mu, Mu =, now the

mean density is the number density of each species into the mass of each species that is rho,



divided by this is the number density of each species the sum over that so it is-- sorry this is ni,

right. 

So it is essentially the number density of each species into the mass of each species divided by

the sum of the number densities of all the species into the mass of the hydrogen atom that is what

you mean by the mean atomic weight, right, in units of the mass weight of the hydrogen atom.

Okay, so this is the-- this is how you calculate the pressure. And here we are assuming that we

have only hydrogen and the hydrogen is ionized, okay.

The temperature and the pressure are adequate to ionize the hydrogen, so we are assuming that

the hydrogen is ionized, okay. So if the hydrogen is ionized then we have 2 species we have the

protons  and we have the  electrons.  Okay. The mass  of  the  electrons  we know is  negligible

compare to the mass of the proton, okay. But the proton is an electron contributed to the same

amount to the number density. Right.

So from here, we can say that Mu, so in the numerator we have the contribution only from the

protons because the mass of the electrons is negligible. Okay. In the denominator, we have the

contribution from both the protons and the electrons. So the numerator is essentially ni where ni

is the number density of say protons into the mass of the hydrogen atom nH let us say into mH,

the denominator is mH and here the electron and the proton density are same.

So we have 2nH so this comes out to be = half. Okay, so for ionized hydrogen this is half. If you

put in the fraction of helium, then it will get somewhat modified. Okay. The mean atomic weight

for ionized hydrogen is half so we can use this. So all that you have to do at the temperature is

you have to—
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T =, so the temperature = the mH Mu P and you have to divide by rho*KB let give this the

temperature, the pressure that you have calculated to calculate the temperature inside the sun and

we can use this to calculate the temperature at the centre of the sun. So let  us take this and

estimate the temperature at the centre of the sun. So you put in the values of, so we know the

density we have just estimated it 1.4 grams per cc.

You know Boltzmann constant, you know the hydrogen mass and hydrogen atom and here you

put half then all of these factors and you get the temperature the temperature comes out to be = if

you use this the temperature comes out to be = 5.8*10 to the power 6 Kelvin somewhere over

here.  Okay.  So  again  do  not  take  this  number  very  seriously  the  main  point  is  that  the

temperature also will scale proportional to these factors.

And it will have some numerical factor which could be half by a few say one order or so. Okay.

So the temperature at the centre of the sun from what we have estimated is somewhere of the

order of tens of millions Kelvin. It is extremely hot which is adequate to ionize all the hydrogen

so what I have told you is also validated here so inside the sun the hydrogen is ionized the

temperature is of the order of the 10s of millions Kelvin.

And it  falls  off to around 5800 at  the photosphere.  Okay, so the temperature is  around few

millions tens of millions of Kelvin here and falls off to around 5800 Kelvin at the photosphere.



This is the temperature gradient as you come outside. Okay with this simple estimate this is what

we arrive at. Okay. Now, the radiation also then; let us see what kind of radiation do we expect at

the centre of the sun. 

So if you have tens of millions of Kelvin what kind of radiation do you expect at the centre of the

sun. Obviously, it is not going to be in the visible, right. At such high temperatures X-ray is the

most dominant kind of radiation.  So at the centre of this sun you predominantly have X-ray.

Okay. So at the centre you have predominantly X-ray and then this light propagates outward and

by the time you are at the photosphere.

You have lowered the temperature of the material and the radiation and you have a temperature

of around 5800 Kelvin. Okay. So, now we have also studied radiative transfer, so let us now take

a look at the propagation of this radiation from the centre of the sun to the outside that is the next

thing that we are going to look at. Roughly let us get the rough picture of how the radiation

comes from the centre of the sun to the outside. Okay. 

So that is the next question that we are going to look at. And if you looking at the propagation of

your radiation, now this radiation is going to scattered with so matter and the matter that we have

here is essentially protons and electrons. These are charge particles so electromagnetic radiation

interacts with charge particles if you know that so they are going-- there is going to be scattering

of the radiation from these charge particles. Okay. 

And, this scattering in general there will be energy transferred in this scattering; scattering could

be elastic or inelastic. Now here we know that the radiation loses energy as it propagates through

this medium, so we know that the radiation the scattering is going to be in general both elastic

and inelastic. We also know this from other consideration, X-ray when you scattered of electrons

you know that there is going to be Compton scattering and which in elastic. 

It can lose energy to the electron. You could also have inverse Compton scattering, okay. So

there  is  energy  transfer  and  between  the  electrons  and  the  radiation  and  the  matter  as  the



radiation  propagates  it  losses  energy  transfers  energy  exchange  energy  with  the  matter  and

slowly comes out. Okay. So we will have both elastic. 
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So the radiation will scatter will be scattered by the electrons and by the protons, right by the

ions both. The electron is obviously going to contribute more than the ions but both of these

affects are going to be there. And these will be are both elastic and inelastic. Both of these will be

there. Now, we know, so let us try to estimate the mean free path of the radiation inside the sun.

Okay. 

And we know how to estimate the mean free path we have discussed this quite some time ago

when we were discussing radiative transfer. So the mean free path which we can denote by L that

is  the  mean  distance  between  which  the  photon  propagates  freely  before  it  encounters  a

scattering before it encounters before it interacts with the matter right is decided by where the

optical depth becomes unity inside it. 

So what we have to do is consider a photon which starts off from somewhere and see where the

optical depth becomes unity when the optical depth becomes unity means it has interacted ones,

high  probability  interacted  ones.  So this  is  essentially  the  condition  that  the  length  into  the

absorption  coefficient  should  be  unity  or  this  mean  free  path  we  have  seen  is  one  by  the

absorption coefficient inside. Right, we have seen this. 



And the absorption coefficient we know is the number density of particles into the scattering

cross-section of each particle. Right. So let us consider for making a simple estimate let us just

consider one process the Thomson scattering,  Elastic  scattering.  So for elastic  scattering,  we

know  the  Thomson  scattering  cross-section  we  have  discussed  this  already  when  we  were

looking at the Eddington limit, this is in the problem. 

So the absorption coefficient in the inside the sun we can estimate to be the density inside the sun

which we have already estimated divided by the mass of the hydrogen atom, this will give us the

electron density, we are assuming that the electrons primarily scattered the radiation through

Thomson scattering. In Thomson scattering what happens, let me draw a picture. So in Thomson

scattering this is my electron, the radiation incident on this is scattered into some other direction. 

And you can treat the electrons as oscillating because of the incident electromagnetic radiation

electric field and then calculate the dipole radiation from that oscillation, that is comes from

scattering. Okay. And Thomson scattering we can assume for our purposes it senses the incident

radiation  into some other  direction  its  frequency does  not  change.  And the scattering  cross-

section of Thomson scattering.

We have already discussed mention this earlier it has a value for the Thomson scattering, and it

has value sigma which is independent of frequency and the value is 6.65*10 to the power - 29-

meter square. We have already discussed this earlier. Okay this is Thomson scattering. So the

electrons  inside the sun will  scatter  the radiation and the number density  of electrons  is  the

number density of hydrogen atoms same.

Because it is in ionized simply ionized so it is the density divided by the mass of hydrogen atom

into the value of sigma, this will give me the absorption coefficient and one by this absorption

coefficient  will  give  me  the  mean  free  path.  If  you  take  these  numbers,  we  have  already

estimated this, this we know and this we know so you take these numbers put them in here. The

photon from inside has to propagate over a distance which is 10 to the power 8 meters, 6*10 to

the power 8 meters to get out.



And then finally it comes to us. It can only propagate around a centimetre before it gets scattered

by  Thomson,  by  electrons.  And  as  a  consequence  of  this  scattering  the  electron  that  is

propagating outwards will now be after scattering will now be propagating in some other random

direction and so the picture is that the electron that the photons which come out get kicked back

and forth  randomly many times  okay at  intervals  at  these  intervals  at  roughly  1 centimetre

intervals and we have to keep on getting kicked around like this.

And they may get slowly out by such repeated kicks random kicks. Okay that is the picture. So

we will now try to estimate some other-- let us try to make a more quantitative description of

this. Okay. Now, we have studied radiative transfers, so let us see what happen if you try to use

radiative transfer to describe this process of scattering, okay. 
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So we are going to assume that the scattering is Isotropic that is what we are going to assume.

Okay, it is Isotropic and it is, so it sends off the incident radiation so we are modelling scattering

as a very simple thing elastic and Isotopic. So the scattering is we model as follows; there is

some incident radiation what the scattering does it is that is sends it off in some random direction

the frequency remaining the same. Okay, that is our model simple model. 



The real scattering process could be more complicated it could be an isotropic. The probability of

scattered radiation going in different direction could be direction dependent.  It could also be

inelastic. But let us just make this simple kind of thing. Okay. For this simple kind of a – with

this  scattering  we  have  already  seen  the  absorption  coefficient  alpha  nu  is  the  number

density*sigma nu. Okay.

And then we can write down the radiative transfer equation it is d/t Tau the specific intensity = - I

nu + the source function S nu. Now, we know how to calculate Tau we just did it. What we have

to now look at is the source function. Now here in scattering the scattered radiation-- radiation

that is scattered from this direction will be a source in some other direction because the radiation

that comes in goes out in some other direction. Okay. 

So let  us ask what is the emissivity, emissivity coefficient,  emission coefficient J nu. So the

emission coefficient we can calculate that is the radiation emitted per unit volume in a certain

direction.  Okay. So  the  incident  radiation  is  I  nu  and  radiation  from all  directions  will  be

observed equally so I have to integrate over all solid angles and it will be going out equally in

different solid angle.

So I have to divide by 4 pi and multiply this with n into with basically alpha nu. So the emission

coefficient is the absorption coefficient into just this factor, right. The radiation that is incident is

scattered into different directions that is all. So if you put in the fact-- the emission coefficient

and the absorption coefficient are related like this. So the incident radiation from all directions

the average over that and then it gets randomly distributed over 4 pi. 

So from here it is clear that the source function which is J nu/alpha nu this is = the integral I nu/4

pi. So in the presence of scattering the radiative transfer equation essentially looks like this, right.

So where is-- what is the difficulty with such an equation. Let us consider I am trying to follow

the evolution of the light along a particular ray and I am looking at it at this point here at this

value of Tau. 



Now if I want to study what happens when I go from here to here specific intensity from all

directions over here, because all of these can get scattered into this direction. So I cannot solve

my radiative transfer equation separately for one ray I have to simultaneously solve it for all

different rays at all different locations which is-- so this is an integral differential equation and it

is extremely difficult, okay. Integro-differential equation, okay this extremely difficult to solve. 

And in journal there are no I mean there are no general solutions available like we had when

there was no scattering. In this case with scattering which is you have to make approximation

and then proceed. Okay, so it is very difficult problem we shall not go into this. We shall analyse

the whole issue in a kind of a simple approach the approach that we shall make is as follows, we

shall model this whole thing the whole propagation of this radiation as a random walk, okay. 

So the incident just looks at any one photon.
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This is a photon like this it  gets scattered over here and after the scattering it goes in some

random direction and then again it scattered over here and it goes in some random direction let

us say like this and again it gets scattered over here and it goes in some random direction could

be here, okay. And in this process the photons move around that is the motion, so it is called a

random walk. 



So at every step at every scattering event the direction gets shifted to a random, random which

was in direction. Okay this is called a random walk. Well, you can think of it as a drunker who

sets out from the pub and wants to go home and his steps are all  random. Okay, there is a

probability that he will reach home but it is a difficult thing. It is a difficult task. So the photon

here also starts off from the centre of the sun and it gets kicked around random.

There is a chance that one of the photon will escape and come out. Okay. So we would like to

move out and understand how the photon propagates under such a thing. To understand this to

analyze this let us consider a random walk in one dimension. So there is a 1-dimension x, we call

it x-axis and my photon starts off from here. In one dimension, it is quite simple it can either go

to the left or to the right. 

So let us say that it goes to one step to the left and in my next step; so this is the first step, step

one. Okay. Then, in my second step again it can go either to the left or to the right, so it could let

us say it go to the right one, this is step 2. Okay. And each step it randomly decides whether it is

go to the left or to the right. So, what we will do is let us consider the position of the photon after

N such steps, okay. 

So we will call this position of the photon after N steps and this will be a sum of small x1 that is

the 1st step + the position after the 2nd step 3rd step + the 4th step etc. all the way to xn. And

these xn’s are random numbers they could be either be +1 or -1. Okay. Or they could be + some

random numbers or - some random number. So if you now ask the question what is the mean, so

random numbers can be generated.

I  could  have  many  realizations  of  this  that  at  each  step  I  generate  a  random  number  and

determine the new position.  I  can do this  process many times and ask what  is  the expected

position of the photons after N steps. Okay. Now each of these are random numbers so the

average which are equal probability of being positive or negative so the average of x1 average of

x2 are all 0. Okay, so the mean position displacement is 0. 

But, if you ask the question what is the mean squared displacement. 
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So let us look at Xn squared, so this will have x1 squared the mean of this + x2 squared the mean

of this and N such terms + there will be 2 x1, x2 the cross terms. Okay. Now, we know that if

you have 2 random variables which are independent then the mean value of the product is the

product of the mean values. Okay, so this term is essential the same as x1, x2 and it is 0. So it is

only these N terms over here which contributes there are N such terms. Okay. 

And the magnitude, so this is the mean square mean square displacement in for one step and this

is  going to  be  the  mean  free  path  of  the  photon,  right.  So  we know that  the  mean square

displacement after N steps is going to be the number of steps into the-- okay so this is the mean

free path so this can I can write it as this the mean free path squares. Okay. That is the mean free

path squared. That is the typical distance between each scattering. Okay. 

So now you see that the photon, so to cover a distance okay so let us see to cover a distance R

sun, the photon will need R sun by the mean free path the square of this-- these many steps.

Right, for the photon to come out from the centre of the sun in steps of the mean free path

random steps of that size the photon will need these many steps. Okay. 
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And the time the photon takes for each step, so we want to estimate the time the photon takes to

come out from the centre of the sun, okay the time for each-- this is going to be the time for each

step the time for each step is the mean free path divided by C, this into the number of steps

which is-- will give the time the photon takes to come out. Okay, the photon does a random walk

inside the sun and finally it at sometime it will be out in the course of this random walk. 

So this is the time that it will take. It has to take these many steps and this is the time for each

step which we can write as the, this is the time the photon would have taken if it travels freely

from the centre of the sun out. And that time we know, the radius of the sun is roughly 2 light

seconds. Okay. The radius of the sun is roughly 2 light seconds so this will be 2 seconds into the

ratio of R sun by the mean free path. Okay. 

So let me remind you what we are discussing, if the photon propagates freely from the centre of

the sun outwards it will take barely 2 seconds to come out. But it cannot propagate freely it has

to it gets scattered after travelling roughly every half centimetre half a centimetre, or whatever

1.7 centimetres. It changes direction. As a consequence, it takes much longer and the amount by

which it gets increased is basically the ratio of the distance it has to cover to the mean free path. 

So if you now put in these numbers we have estimated we know both these numbers, if you put it

in these numbers this comes out to be somewhere around 7600 years. So it takes much longer for



the photon to come out because it has to slowly diffuse out from the centre through repeated

scattering.  Okay.  Let  me  also  remind  you  that  the  estimation  that  we  have  made  is  an

underestimate because I have underestimated this scattering cross-section. 

A more realistic estimate is 4 times this and it will be around 30,000 years. So if I take the right

scattering cross-section and the densities the time it takes the mean free path actually goes down

it is around half a centimetre and the time it takes around 4 times so it is around 30,000 years;

this is the time the photon takes to come out. Okay. So let me briefly remind you what discussed

today. 

Today, we have learnt that the centre of the sun is an extremely hot its tens of millions Kelvin,

and the pressure is also extremely high, the whole thing is ionized gas and from the centre you

expect X-ray and things like that, X-ray is essentially and these X-ray get scattered repeatedly

inside the sun and it slowly diffuses out that is how the radiation from the centre of the sun

reaches us. Okay. 

Now, an important question that we have not addressed is what is the source of this energy? And

this is some that we have to look at we shall go into this in the due course as we progress.


