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Welcome, we have been discussing radiation for the last 2 classes and we started off by learning

that it is an electromagnetic wave and if you are dealing with length scales that are much larger

than the wavelength you need not bother about the fact that it is a wave, we can treat it as rays

and the energy that is carried by a set of rays is quantified using the specific intensity I knew.

And we discussed various properties of this specific intensity in the first class. In the second

class;  in  the  last  class,  we  discussed  what  happens  when  radiation  propagates  through  a

medium, so this is a phenomenological description we had one term that describes the emission

and another term that describes the absorption and then we found out the general solution and a

behaviour of that solution; the general behaviour of that solution.

In  today’s class,  we  are  going  to  discuss  thermal  radiation,  so  what  is  thermal  radiation?

Thermal radiation is radiation that is emitted from material that is in thermal equilibrium, so the

material is in thermal equilibrium and radiation is emitted from such a material then it is called

thermal  radiation.  Now there is a flaw in the definition itself  right in the start  because if  a

material is in thermal equilibrium if it radiates, then it is losing some energy, right.
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So, we assume that  the radiation;  the energy that  is  lost  is  either  compensated  or it  is  not

significant compared to the energy in the media, okay. So, we shall be discussing thermal and

the  radiation  here  is  emitted  from some material,  which  is  in  thermal  equilibrium,  so  the

material  is  in;  that  is  the  material  and it  is  in  thermal  equilibrium,  okay and we start  our

discussion with a specific situation that is called blackbody radiation.

So, right at the start we are going to discuss; what is called black body radiation? So, let me

first explain what we mean by a black body cavity? This refers; so just imagine a cavity like

this and these are the walls of the cavity and these are the walls enclose a cavity and there is

radiation  inside  the  cavity  so  there  is  radiation  here  and the  cavity  is  assumed  to  be  at  a

temperature T, we maintain it at a temperature T.

And we wait sufficiently long, so that the radiation inside interacts successively with the; keeps

on interacting with the walls of the cavity and through repeated interaction, the radiation inside

is comes to equilibrium with the walls of the cavity outside, okay. So, the radiation inside this

cavity is now in thermal equilibrium; it is in equilibrium with the walls of the cavity, okay. Such

radiation that  is in equilibrium with material  at  a temperature T is said to be blackbody is

referred to as a blackbody radiation; this is a black body cavity.

The walls can absorb and emit radiation at all frequencies that is why it is called black; a black

body, okay. So, the radiation inside is in thermal equilibrium with this material  outside the

material outside is in thermal equilibrium and a temperature T and the radiation after repeated

interaction with the material is also now in thermal equilibrium with the surrounding with the

walls of the cavity, then this radiation is said to be referred to as blackbody radiation.

So, this is radiation that has come to equilibrium with matter and a temperature T okay. Now,

what we do is; we make a small hole somewhere here, let us say the hole is not; hole is just

essential for studying the radiation, so let us imagine that we make a very small hole through

which some of the radiation comes out, okay without disturbing the equilibrium inside. So, the

hole, we are assuming is so small.

So, the amount of radiation that comes out, you are assuming is so small that it does not disturb

the radiation; the equilibrium inside, okay. So, this radiation that comes out will have some

specific intensity; Inu, right, so this is the specific intensity of the blackbody radiation. Now, the



first thing that we are going to see is that the specific intensity of blackbody radiation does not

depend on the material that makes up the blackbody.

Now, either does it depend on the shape, so this does not depend on the material that make up;

makes up the walls of the cavity neither does it depend on the shape or any other property of the

cavity, it does not depend, okay, so it does not depend on these, okay. It is independent of all of

these things; it depends only on the temperature of the cavity; that is what we are going to see.

The only property of the cavity that the specific intensity of this blackbody radiation depends

on is the temperature.
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So, this is what we are going to see now and how do you arrive at this conclusion; to arrive at

this conclusion what you do is; you consider 2 cavities. So, let us draw 2 cavities; 2 black body

cavities  and whose  shapes  could  be  different,  the material  that  makes  up these  2 different

cavities could be different and we assume that there is a filter in between which only lets light

of a certain frequency nu pass through.

So, there is a; there are 2 such cavities and there are holes in these 2 cavities, which are like this

and the shapes of these 2 cavities could be different, the materials making up this cavity and

this  cavity  could be different  but  they are linked together  through a hole like this  and we

assume that there is a filter here that only lets light of a particular frequency nu pass through,

okay. 



Now, the amount of radiation that goes from the left to the right in any specific direction is

going to be I nu and that is the radiation that goes from the left to the right and the radiation that

comes from the right to the left in the same direction, let us say it is specific intensity is I nu

prime and the same frequency. Now, if these 2 things are different then there would be net

energy transfer from one cavity to another.

But both the cavities, we have assumed to be at the same temperature this is something I forgot

to  mention,  both  the  cavities  are  at  the  same  temperature,  so  this  radiation  is  in  thermal

equilibrium and is at a temperature T, so is this radiation, this is at the temperature T this 2 is at

a sub temperature T. So, if the 2 specific intensities are different, it would mean that energy

would flow from one cavity to another.

Now, that would violate the laws of thermodynamics right. There are 2 systems at the same

temperature,  I  cannot  have heat flowing energy flowing from one to the other, right.  They

would be in equilibrium, so this is not true, so it essentially tells us that I nu is a universal

function; is just a universal function of the temperature alone, it cannot be different in these 2

cavities, okay.

And this universal function of the temperature we denote by B and this is the Planck function, it

is  called  the  Planck  function,  so  this  is  an  universal  function  of  the  temperature  and  it  is

isotropic,  we  also  see  from this,  okay.  So,  the  blackbody  radiation  and  specific  intensity

depends only on the temperature of the cavity nothing else and it is isotropic, it is the same in

all directions.
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So, that is one property of the blackbody radiation,  which we can arrive at  just  from your

thermodynamic considerations, otherwise it would violate the laws of thermodynamics, okay.

So, that is the first property. Let us, now derive another property; this is of the thermal radiation

this is called the Kirchoffs or Kirchoff law, okay. So, let us again consider a black body cavity

and a temperature T.

And let us assume that we have put some material also at some temperature T; at the same

temperature  T  over  here,  so  this  material  that  we  have  introduced  here  is  at  the  same

temperature as the cavity and the radiation inside okay and let  us write down the radiative

transfer equation through this material, so the radiative transfer equation we see is dI nu, d tau =

- I nu+S nu.

Now, note that even though we have introduced this material at a temperature T it still remains

to be a black body cavity because this is at the same temperature as the rest of the wall okay, so

this again is a black body cavity and the incident radiation on the left hand side, we know that it

is the Planck function that it is inside the black body cavity, so the incident radiation we know

is the Planck function, now what comes out must also be the Planck function.

Because this entire thing is still continues to be a black body cavity, so from this we can say that

the source function for this; the source function for this material must be = the Planck function,

right. If it were more than the Planck function, then the specific intensity would increase when

the radiation passed through this and if it were less than the specific intensity would decrease

but introducing such a material this still continues to be a black body cavity.



So, the specific intensity cannot change, it must continue to be the Planck function, so it tells us

that  the  source  function  for  a  thermal;  this  is  a  thermal  medium,  thermal  okay  is  there  a

temperature  T. So,  for  any  thermal  emission  thermal  radiation,  for  some thermal  material,

material in thermal equilibrium; this is a material in thermal equilibrium at temperature T. The

source function = the Planck function.

Or it gives us a relation between the emission coefficient and the absorption coefficient; we

have seen that the source function is the ratio of the emission coefficient to the absorption

coefficient. So, it tells us that j nu should be = alpha nu * B nu T, that is a property of thermal;

for thermal material, right. So, what have we learned till now? We have learned essentially 2

things.
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So, we have 2 concepts now, one concept is as follows. Let me just briefly summarize what we

have learnt. One concept is that of a black body radiation; let me forget about the wall hole in

the cavity and the black body radiation is a radiation that is in thermal equilibrium, so this is

called black body radiation, the radiation here has come to thermal equilibrium with material at

thermal equilibrium at some temperature T matter it.

And we saw that the specific intensity of this radiation is the Planck function, which depends

only on temperature universal and that is the one thing. The second thing is thermal radiation,

which is different from blackbody radiation; which could be different, so thermal radiation we

have some material here, which is at a temperature T in thermal equilibrium at a temperature T



could be a gas at temperature T, could be some material okay a piece of glass at temperature T

whatever.

And radiation that originates from this will have a source function which is B nu, which is the

Planck function but the radiation need not have come to thermal equilibrium with the material

okay, the source function is the Planck function. The radiation itself need not have come to

thermal equilibrium with the material, if it comes to thermal equilibrium with the material, then

the radiation also; the specific intensity of the radiation also becomes the Planck function.

But this is a more general situation, so here the source function of the material is the Planck

function such a radiation is called thermal  radiation,  okay and let  me ask you, what is the

condition? So, what is the condition that this should; the specific intensity should become equal

to the source function, we saw it in the last class when discussing the radiative transfer equation

we collect what we had considered this particular problem, right.
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So,  we  had  considered  this  particular  problem  in  the  last  class  where  there  is  radiation

propagating through a medium which has the same source function everywhere, the incident

radiation could have some specific intensity I nu.
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As it  propagates  inside,  the specific  intensity  changes  and inside the material,  the  specific

intensity is the source function plus this term. Now, as the optical depth tends to vary becomes

larger and larger what happens? This specific intensity tends to the source function okay and

finally given adequate optical depth, this becomes equal to the source function, so if this is

thermal medium, a thermal material  any radiation that is incident inside on this provided it

propagates for an adequate amount of optical depth in this material.

It will finally become the; it will come to equilibrium and it will become the Planck function, it

will become blackbody spectrum basically blackbody radiation okay, that is an important lesson

which has to be borne in mind, right. Now, let us derive a few properties of the blackbody

radiation  of  the  Planck  function  essentially  or  blackbody  radiation  starting  from  pure

thermodynamic principles, okay.
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So, we are going to start from pure therm; we are dealing with black body radiation and we are

going to start from thermodynamic principles. So, let me draw the picture again we are drawing

the same picture  quite  a  few times,  so properties  of the blackbody radiation  and these are

properties that can be derived purely from thermodynamic consideration. So, this is a black

body cavity, let me draw it again at a temperature T.

So, there are the walls  of the cavity and there is  radiation inside; we are dealing  with the

radiation inside. Now, the radiation inside this cavity can be treated just like any other thermo

dynamical system, right, it is a thermo dynamical system, it is a thermal equilibrium, so we can

treat  it  just  as  any  other  thermo  dynamical  system  and  we  know  from  the  first  law  of

thermodynamics, that the heat that is gained by the system is the internal energy.

So, the heat; see the internal energy goes up, the heat has to; either heat has to flow into the

system or there has to be work done on the system, that is the first law of thermodynamics okay

and we know that this is not a perfect differential but the entropy we can write this as TdS and

the entropy is a state function okay, so we can write it the first law in this way. Now, for the

blackbody radiation, we have seen; what are the properties of the blackbody radiation that we

already know.
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So, there is one property okay a property which I should have mentioned but I did not the fact

that this radiation is isotropic, for any radiation we saw that the energy, let me do it here; for

any radiation, the pressure we saw the pressure = the internal energy density of the radiation

divided by 3 and we have seen this right in the beginning in the first class lecture on radiation.

The pressure of the radiation is the energy density divided by 3 okay. So, the total and internal

energy of the system; we can write the internal energy density into the volume of the system

and the pressure we can write as 1/3 the internal energy density, this we have derived in the first

lecture and this we are writing the total internal energy in terms of the density into the volume.

So, using this, we see that the differential of the entropy is 1 by the temperature into; then we

have 2 terms that come from this, the internal energy can go up due to 2 reasons; one is if the

density of internal energy goes up, so I could have Vdu+ udV + the entropy could also increase

due to this increase in the volume and the pressure acting on that, so that will be u/3 dV.

And another thing that I should mention, so there are 2 things that I should mention the second

thing is that the total internal energy density; the total internal energy density, so the energy

density of radiation is equal  to this also we have derived; it  is  equal to the integral  of the

specific intensity over all solid angle all directions. This we have to divide by c, right and so

here since the blackbody radiation it is isotropic.

So, we know that this is = 4pi/c * B nu T right. The specific intensity of blackbody radiation;

for blackbody radiation this is the Planck function, so we know that we have this relation. So,



what we see is that the pressure and the energy density of this Planckof this blackbody radiation

both  depends only on the  temperature,  so both of  these,  so the  internal  energy the  energy

density here u is just a function of temperature alone.

The pressure 2 is just a function of temperature alone okay; all of these things depend only on

the temperature. So, from this we can write this as 1/T, right. Now, the entropy we know is a

function of; we can write the entropy as a function of any 2 of the variables PV or T, so we

write it as a function of V and T right, so from this what we have is that the derivative of the

entropy with respect to temperature at a fixed volume; derivative of the entropy with respect to

the temperature at a fixed volume, we can read off now that is V/uT * du dT.
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Similarly, the derivative of the entropy with respect to volume at a fixed temperature is 4 third

u. Now, if I differentiate this with respect to V and if I differentiate this at a fixed temperature if

I differentiate this with respect to T at a fixed volume then the resultant should be equal right

because the resultant then should be del square S del T del V. So, we are going to differentiate

this with respect to V.

And if I differentiate this with respect to V at a fixed temperature, what I get is that; this is =

1/T du dT; Sorry, this should be 4/3u /T and we are going to differentiate this with respect to

temperature, so it should be equal, right. The order of the derivative does not matter, so if I

differentiate this with respect to volume it should be equal to this differentiated with respect to

temperature.



And what we have if I differentiate this with respect to temperature is -4/3u /T square+4/3 1/ T

du dT okay, so we can combine these 2 terms take this onto the left hand side and what we have

is that; no not these 2 terms sorry, these 2 terms, we can combine these 2 terms take this onto

the left hand side and what we have then is that du dT = 4times u/T, right. We have just taken

this onto the left hand side, so 1/3 just remains.

And here, I have 3/4, both pickup minus sign, so the 3 cancels out what we are left with is this,

which tells  us that U; the energy density is proportional to T to the power 4 at  the energy

density of this radiation of this blackbody radiation is proportional to the temperature to the

power  4,  from  purely  thermodynamic  considerations  okay  and  this  is  called  the  Stefan

Boltzmann law basically.
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Well, this is not exactly what is referred to as Stefan Boltzmanns law but we can derive it I will

just show you how to derive it just now. So, let us write this internal energy the energy density

of this radiation as aB, T to the power 4, where aB is a constant; the constant of proportionality

that is the Stefans constant, whose values we cannot determine from these arguments okay, just

tells us that the energy density is proportional to T to the power 4, right.
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It also tells us so once you know the energy density you know this, so you can work out what

this is going to be, so this will be; no this is U, this is not the pressure okay. So, the U = this; the

energy density = this; 4pi/ C the pressure is 1/3u okay, so what it tells us is that the specific

intensity or the brightness, the u; the frequency will not be there this will not be there it is

integrated over all frequency, right.

So, there is a frequency integral here also, so what it tells us is that the integrated bright over

brightness; the integrated brightness is specific intensity = cu/ 4pi okay, so this is the specific

intensity  of this totally  integrated overall  all  frequencies  of this  radiation of this  blackbody

radiation.  Here  we  have  not  the  specific  intensity;  the  intensity  okay,  integrated  overall

frequencies.

Now, we had also remember considered a problem where we had a spherical surface emitting in

isotropically in all directions with the brightness B and we had calculated the flux at different

distances from this and we had seen that at the surface, the flux was = pi*B and that is easy to

understand you have to just integrate over half basically okay, so this was what we had seen that

the flux = pi * B, so the flux = c times u/4.

So, this is another; this is actually what is called the Stefan-Boltzmann law, the flux of radiation

from any surface the surface of a blackbody at a temperature T = sigma T to the power 4, where

this sigma = c aB/4 and this is called the Stefan-Boltzmann constant and this is referred to often

as the Stefans constant okay but the values of these constants cannot be determined from these

thermodynamic arguments, okay.



What we can determine is the fact that the radiation behaves like this and you can then do

experiments  and determine  the value  of  these constants  from the  thermodynamic  from this

thermodynamic approach okay. We can also calculate the entropy density, once you know the or

the total entropy because once you know the internal energy as a function of temperature, you

can also determine the entropy as a function of temperature okay.

And the entropy density comes out to be; so the total entropy in the system; let me write it, the

entropy in the system I leave it for you as an exercise, the entropy = 4/3 energy density/ T into

the volume okay. The entropy is 4/3 the energy density by the temperature into the volume, so

this is proportional to T cube, right because it is the energy density by the temperature, so the

entropy goes as T cube and that energy density goes as T4.

And the constant for the entropy is this or if you want the entropy density then you can just

ignore the volume okay, so what have we done till now let me briefly recapitulate before we

move on to  more detailed  discussion.  So,  until  now we have first  defined what  is  thermal

radiation?  What  is  blackbody  radiation?  And  then  we determined  certain  properties  of  the

blackbody radiation.

Its specific intensity is a function of temperature alone, it is isotropic. The source function for

thermal  radiation  is  the  Planck  function,  which  is  also  the  specific  intensity  of  blackbody

radiation  and  then  we  showed  that  the  total  energy  density  of  blackbody  radiation  is

proportional to T to the power 4 okay. Another one or 2 more very, okay useful things before

we finish.

So, let us now consider, so we have that is what we have shown before we finish this particular

topic, let us now consider the situation where I make; I do some adiabatic transformation on

this  black body cavity  okay. Let  us consider  a  situation,  where suppose I  make the cavity

expand adiabatically, what do you mean by adiabatically? There is no exchange of heat and dQ

is 0, so the entropy is conserved okay.
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If the entropy is conserved, so under adiabatic expansion, the entropy is conserved and entropy

I just told you and you can easily verify is; 4/3u by the temperature; the energy density by the

temperature into the volume, so what it tells us is that T cube*V is a constant right and we also

know that okay so it is convenient to write this relation in terms of the pressure and the volume

okay so this is one relation.

This is also convenient quite often to write it in terms of the pressure and the volume. Now, we

know that the pressure is u/3 and we know that this is proportional to T to the power 4, so we

see that this relation can be written as P to the power 3/4 * volume is a constant or P volume to

the power 4/3 is a constant okay, this is very convenient. Now, we have something called the

adiabatic index which you have possibly encountered P V to the power gamma is a constant.

So, here the adiabatic index gamma is 4/3 okay, this is a thermodynamic medium where the

adiabatic index is 4/3 okay and this is quite a useful thing that we shall be using quite a bit in

this course okay. So, this more or less completes the macroscopic description of thermodynamic

description of radiation this is as far as you can possibly get. Now, we shall move on to a

microscopic  description;  the  brief  idea  of  the  microscopic  description  of  the  blackbody

radiation.
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And how you can determine these quantities, the Stefan constant aB, which tells you how much

is the energy density or how you can determine sigma, the Stefan-Boltzmann constant okay. So,

for this  you require  a  microscopic  description so let  us look at;  briefly  look at  what some

aspects  of  this,  so  we are  going to  look at  this  so  microscopic;  so  we let  us  start  off  by

considering a volume; a cube like this of side L; all 3 sides are L okay. 

So, a volume is L cube and we assume that there are electromagnetic waves inside this cube.

And we will  assume periodic boundary conditions  okay, so if  you have periodic  boundary

conditions then the waves that you can have; the wave number of the waves that you can have

is going to be restricted, right and it will have to be such that one entire wave fits into this box,

so this is one possibility or you could have 2 wavelengths fitting into the box etc.

So what you can say is that the wave vector for all possible electromagnetic waves inside this

can be written as 2pi/ L into; let us say li+mj+ plus nk, where l, m and n are integers, okay. So,

the possible wave vectors for the electromagnetic waves that you can have inside this box are

not unrestricted and they are of the form that the wave vector should be 2pi/ L, l*i+m*j+n*k,

where l, m and n are integers okay and the frequency of the angular frequency we know omega

= for electromagnetic waves in vacuum, it is the speed of flight into k or we can straight away

write down the frequency which is of interest to us.

So, this is going to be ck/2pi, so each such k is we are going to refer to it as a mode of the

electromagnetic  radiation okay, so this  is  one mode one set  of integers is one mode of the

electromagnetic radiation okay. So, these are the possible modes of the electromagnetic wave



that are allowed inside such a cubic box okay and corresponding frequency is here and we

know that these are photons.

So, each mode can have number of photons and the number of photons in each mode we will

denote by nk that is the occupation number of that mode okay which is a microscopic relatively

microscopic thing here, so this tells us how many photons are there in any particular mode. So,

the entire electromagnetic radiation in this box can be decomposed into different modes and nk

is the occupation number; the number of photons in each mode.

And it will be different for each value of k okay, further the energy associated with any mode

let us call it epsilon k = h with one photon is h nu, where nu can be calculated for that mode like

this right, so the way we imagine you think of the electromagnetic radiation in this box; the

electromagnetic  radiation in this  box can be decomposed into modes,  each mode will  have

some number of photons that is the occupation number given by the occupation number. 

Each of these photons  will  have some energy okay, so the  total  energy of  electromagnetic

radiation in this box is to be thought of like this. I hope this picture is clear now let us look at

the K; the direction k vectors the k space okay, so this is the wave vector space kx, ky, kz and

let us ask the question how many modes are there in some volume element delta kx, delta ky,

delta kz, in this volume element how many modes do we have?

And it is quite clear that this will be = 2pi/L cube delta L, other way round actually we want the

number, so we have this relation that delta kx, delta ky, delta kz will be delta l*delta m*delta n

right, if I just increase kx only this is going to increase, if I just increase ky only this will

increase, if I increase just kz only this will increase. So, if I want to count the number of modes,

I have to take the increase in this into the increase in this into the increase in this.
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The product will give me the total number of modes right, so what I can say is that delta; the

number of modes is going to be; let me write down the number of modes, so that is going to be,

so the number of modes in this volume element in this space of wave vectors that this is the

volume element in the space of wave vectors delta K cube right, it is delta kx, delta ky, delta kz,

if I divide this by multiply this by L cube and divide by 2pi cube, this gives me the number of

modes that are there in this volume element in the wave vector space okay.

That is essentially delta l*delta n*delta m right, so this is the number of modes. Now, I want to

calculate the number of photons, so I would like to calculate the number of photons in this

range of delta k. How many photons are there in this range of delta k? okay, so what I have to

do is; I have to multiply this with the occupation number of the modes that are there in that

volume.

And if I want to calculate the energy; the total energy of the photons the modes that are there in

this volume of dQk, then I have to multiply it with another factor of epsilon k, the energy of

each photon right, so epsilon k, this gives me the energy of; this is the energy contained in the

photons that lie in that region of the k space okay and we are interested in the energy density of

the photons that lie in that region of k space.

So, if you are interested in the energy density then what you have to do is you can just divide by

this L cube okay and the energy density of photons that have that lie in that region of the k

space, you can write now as, let me write it here, so delta e; delta let us say, uk = the energy

density that = nk, that is the occupation number the energy we know, so let me write it here.



So, it is the energy into the occupation number of those modes into the volume occupied cube

by 2pi cube okay right. Now, it is convenient to work in spherical polar coordinates, so think of

these wave vectors; these wave vectors in spherical polar coordinate, I can write in terms of the

solid angle subtended by these wave vectors d omega*k square dk, so I can write this delta k

cube as k square dk.

The energy of each photon, I can write as H nu, I have the occupation number divided by 2pi

cube  *  d  omega,  the  solid  angle  and  so  the  wave  vectors  I  have  written  in  terms  of  the

magnitude and direction and the direction I have decomposed into solid angle like this okay.

Now, we know; we want to write everything in terms of frequency, so let me write it in terms of

frequency.

In terms of frequency, so I can replace k/2pi nu/ c, so the k can be replaced by 2pi nu/c, so if I

do that I will have 2pi cube coming from this, so that is gone and so this will become the

occupation number into h nu cube d nu d omega/c cube okay, so what have we calculated? We

have calculated the energy density of the radiation that is propagating in this frequency interval

d nu that is propagating in this per unit volume that the energy density that is propagating in this

range of directions d omega.
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And in the frequency interval d nu, so from here, we can straight away identify that we had

defined this specific energy density omega remember this is equal to and the specific intensity

Inu =; so you have to just multiply it with c, so the specific intensity is going to be h nu cube/ c



square nk, okay right. So, we have seen this is essentially the relation between the specific

intensity and the photon occupation number okay.

This relates the number of photons that are propagating in a certain direction with a certain

wave  vector  to  the  specific  intensity  of  that  ray  in  that  direction  with  the  corresponding

frequency okay, so this is a specific intensity of the light in the same direction as this wave

vector, the same frequency corresponding to this wave vector. They are related like this okay

and you can put in a factor of 2.

To account for 2 polarizations if you wish assuming that the light is not polarized okay. So, let

me stop over here for today and we shall continue on this; on this microscopic approach and see

how we can derive properties of the blackbody radiation from this.


