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Welcome, we have been discussing radiation and in the last class, we discussed how you

could describe the energy that is being carried by a ray and I told you that this could be

described this could be quantified in terms of the specific intensity or the brightness, which is

denoted by I nu and this quantity is defined.

(Refer Slide Time: 00:47)

For a ray, we have a particular specific intensity and we have defined the specific intensity in

such a way so that it tells us the following thing. If we place an area element of size dA

normal to the direction of the ray and ask the question what is the energy coming into this

area element from the solid angle interval d omega in the direction of the ray. So the energy

incident in this ray is given by the specific intensity into the area element,  into the solid

angle, into the time interval, into the frequency interval.

So this specific intensity tells us the energy incident that is being transported by this ray,

which is also the energy that is incident on this area element dA from the solid angle d omega

so it is from a specific direction, very small range of directions in the frequency interval d nu

and the time interval dt that is how the specific intensity is defined. So this is called the

specific intensity or brightness.



And this is what we use to characterize to quantify radiation. On provided you are dealing

with length scales, which are much larger compared to the wave length where we can think of

light as rays and then in the last class, we studied certain properties of this specific intensity. I

told you actually I showed you that it is conserved if light propagates in vacuum. So if light

propagates freely in vacuum, the specific intensity does not change along the ray that we saw

this in the last class.

And  we  saw  various  other  things  that  you  could  calculate  once  you  knew  the  specific

intensity  you could calculate  the flux; you could calculate the pressure and various other

things.  In  the  last  class,  we had just  briefly  started  discussing  what  happens  when light

propagates through a medium and that is what we are going to discuss in today’s class right.

So let me just briefly repeat what we had discussed right at the end of the last class.

(Refer Slide Time: 04:00)

So  we  were  considering  emission,  the  emission  of  radiation.  So  our  attention  is  on  a

particular ray and it is travelling in a medium so this is the medium and our ray is not in a

single direction, it is in a small range of directions so in the solid angle interval d omega so

this is what we are interested in, in the solid angle interval d omega, in a frequency interval d

nu, in the time interval dt that is the energy that is incident.

So we are interested here in rays travelling in the direction of the solid angle interval d omega

and the light here is propagating through a certain medium. So the incident energy we have

already calculated this let us say that this has a volume. Let us first calculate the incident



energy. Let us use S to label the points along the ray and this is S, this is s+delta S. This point

is S, this point is S+delta S, dS you may say okay S+dS.

Now the incident energy on this surface, let us call the surface dA. We just saw how much the

incident energy is, the incident energy is I nu and the point S*dA d omega d nu dt. Now we

next define something call the emission coefficient J nu. So this medium through which the

light is passing is also emitting radiation, so when the light comes out the energy that would

come out would be the energy that is incident + whatever has been emitted by the medium in

between.

Now the emission coefficient is defined in such a way so that J nu*the volume element. So

here what is the volume? The volume here is dS*dA. This is the energy that is emitted out in

the solid angle interval d omega, in the frequency interval d nu, in the time interval dt. So the

emission coefficient tells us the energy that is emitted in a particular solid angle d omega.

In the time interval dt, in the frequency interval d nu/a volume dV where here dV is dA*dS

that is the volume that the light is going through that is what gets added to this ray okay. So

the light that comes out is now the specific intensity I nu at the point S+dS and everything

else  remains  the  same.  So  with  this  definition  of  the  specific  intensity  of  the  emission

coefficient it essentially tells us per unit volume, the energy emitted in that particular per unit

frequency interval, per unit time, per unit volume, per unit solid angle okay.

So with this definition of the emission coefficient, the difference in the specific intensity in

the length interval dS is J nu. So from this we can straight away say that dI nu dS = J nu. So

when the ray travels with the distance dS through a medium with emission coefficient is J nu,

this is the rate at which the specific intensity changes okay, this increases by an amount J nu

dS okay.

So this is the emission so we model the emission process, here we are not going into the

microscopic detail of how the emission occurs right. We are not going into the microscopic

detail of how the emission occurs along the ray. We just quantifying whatever mechanism

you have through this emission coefficient, which tells us that per unit volume that is the

energy emitted in this solid angle d omega, in the frequency interval d nu, in the time interval

dt which is of our interest okay.
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And as a consequence of that the specific intensity changes like this. Let us now quantify the

absorption that is the other possible process so we are looking at absorption next okay. That is

the next thing of our interest and here so we have the same thing, we have a ray which is

propagating and it goes through a medium and the question is what happens to the specific

intensity when the ray has travelled through a length dS through some medium, it will get

absorbed.

In general, there will be emission and absorption both so how do you quantify the absorption?

And for this there is something called alpha nu, which is the absorption coefficient okay. Here

again let us go through the same exercise. So the incident energy per unit we are interested

only in a certain solid angle so the incident energy is I nu*dA d omega d nu dt. Now the

energy that gets absorbed here. This is at the point S okay so at the point S.

And the energy that gets absorbed is alpha nu times I nu*dA the volume, so the absorption

the energy that is removed by a volume dV is alpha nu into the incident specific intensity into

the volume. Again we have all those elements in the solid angle okay and this is equal to the

specific intensity at the point S+dS. Again doing the same thing, so the absorption process

now gives rise to a decrement in the specific intensity.

And the decrement we see is given by dI nu dS= -alpha nu I nu okay. So let us try to just get a

picture of this of why we have written it in this way that it is proportional to the incident

specific intensity into some absorption coefficient.



(Refer Slide Time: 13:41)

So consider a hypothetical situation where we have a volume. This is the volume that we

were  interested  in,  dA  dS  and  in  this  volume,  we  have  small  absorbers  distributed

microscopic absorbers and each of these absorbers has a scattering cross section of sigma nu

that  is  the  scattering  cross  section,  it  is  the  area  which  each of  these  microscopic  small

absorbers that is the area through which it absorbs.

So the incident energy is let us just ask the question what is the total area that is actually

absorbing, so these absorbers have a number density n okay. So let us assume that there are

these small absorbers with number density n so n of these absorbers per unit volume and each

one has a surface cross section area, a scattering cross section of sigma nu that is the area

which it presents for absorption okay.

So let us ask the question what is the total area covered by my absorbers in this volume? To

do that we have to take the number density and multiplied by the volume, so that is the total

number of absorbers. Each absorber has an area sigma nu so that is the total area, which is

presented by the small, small absorbers and the total energy that is absorbed now is going to

be the I nu the incident specific intensity into this area into the solid angle into d nu dt right.

So this is the energy loss that is going to be caused by these small, small absorbers located

over here, which with number density n and scattering cross section sigma nu right. So which

is why we have written it which is one picture which kind of gives us a feeling for why we



have  written  the  absorption  term as  the  incident  specific  intensity  into  some  absorption

coefficient.

And here we see that the absorption coefficient can also be written in terms of the scattering

cross section of these individuals, microscopic scatters and it can be written like this where

sigma nu is the scattering cross section, the area of each of these small, small absorbers and n

is the number density okay. This is also quite useful sometimes when we know the scattering

cross section of the individual microscopic absorbers.

So now we are in a position to combine both of these and write down the radiative transfer

equation, which tells us what happens to the radiation as it propagates through a medium

okay. So let us write down the radiative transfer equation now.

(Refer Slide Time: 17:29)

So this is called the transfer of energy through radiation,  radiative transfer which is very

important in astrophysics and the equation now as we are interested so this is the situation

that we are considering is that we have a ray of light. We are interested in a particular ray of

light, S is some distance parameter along the ray and the radiative transfer equation is the

derivative of the specific intensity with respect to S.

So there will be an input of an energy due to emission and that is given by J nu and there is a

removal of energy, which is given by - alpha nu I nu right. So this is the radiative transfer

equation, which governs the propagation of radiation with which we can use to study how



radiation propagates through any medium okay. So the rest of this class is largely going to be

devoted to the discussion to the analysis of this equation right.

So let us start off by discussing 2 simple situations. The first situation is where we have only

emission. So if you have only emission, so this is going through a medium so we have a

medium over here right so as the light propagates through a medium let us suppose at the

absorption is very small may be neglected and it is the emission that is important so the light

is propagating through this medium, it is the emission that is important.

In that situation we can forget about this and then we have I nu this let us say is S=0 when it

enters  the medium okay and we are interested in I  nu as we go along the ray so this  is

increasing S. So I nu at some point S is I nu S = 0+ the integral 0 to S. Now the emission

coefficient can vary inside the medium, it need not be a constant so I have J nu S prime dS

prime.

And if it is a constant then the problem is very simple, I have just got the emission coefficient

into the length okay. So that is how the specific intensity increases okay so that is one of the

simple situations. The other simple situation, which we encounter quite often is where you

have only absorption and we encounter this very often. For example,  light is propagating

through a slab of glass or through some water or through the atmosphere when we look at the

stars.

So in any such situation typically it is absorption which is important and not the emission. So

in such a situation where you have only absorption, here again the solution is rather simple.

So here we do not have the emission term so you can bring this I nu on to the left hand side

and integrate this and we can straight away write down the solution without going through

the mathematics the solution is I nu S. So S is some point inside the medium = I nu 0. 

So when you bring the specific intensity on to this side you will get a log of the integral of

alpha nu*S dS. So when you invert the log you get an exponential. So this is the incident

specific  intensity*exponential  -0  to  S  alpha  nu  S  prime  dS  prime  right.  So  it  decays

exponentially if the absorption coefficient is a constant then it just decays exponentially with

the increasing length - alpha nu*S okay. 



So this is how the specific intensity changes with the increasing distance inside this. Now we

are  interested  in  a  situation  next  where  we  have  both  emission  and  absorption.  So  the

question is how to solve the equation, the radiative transfer equation. In such situations, it is

very  convenient  to  introduce  something  called  the  optical  depth  so  let  me  introduce  the

optical depth.

(Refer Slide Time: 23:49)

And we use the symbol tau to denote this quantity called the optical depth and this is very

useful and very interesting quantity if you are doing radiative transfer okay. So this optical

depth so the way we proceed is that we divide this equation with the absorption coefficient

alpha nu okay. If I divide this equation with the absorption coefficient alpha nu then we have

in the denominator over here we have d tau = alpha nu dS okay.

And this is called the tau is the optical density. So we can integrate this and determine tau so

tau the optical depth it is a function of S obviously and this is 0 to S alpha nu S prime dS

prime. This is the optical depth okay so we are interested in the propagation of this light into

this medium S is 0 over here, S increases in side and the optical depth is the integral of the

absorption coefficient into dS as you go inside the medium and you integrate till the position

you want to calculate it at okay.

Now what does the optical depth tell us? Let us take a look at this okay. So to get a clear

picture of this, medium is said to be optically thin okay. If tau < 1, a medium is said to be

optically thin, so it is said to be optically thin. So let us see what it implies you see this term



over here what happens to the specific intensity as you go inside the medium. It falls off

exponentially right and it falls off exponentially as e to the power - the optical depth.

So if the optical depth is small say my medium is only this much and my optical depth is

small so this is a small number so my specific intensity whatever goes in largely comes out.

There is very little loss inside. If this number over here is quite small, is very small then the

exponential is very close to 1 and whatever goes in roughly comes out. There is a very small

attenuation  inside or we can say that  the chance of  a  photon, which enters  this  medium

coming out without being absorbed is quite high.

The  average  photon  does  not  interact  with  this  medium,  does  not  get  absorbed  by  the

medium, it just goes through and comes out okay so this is what is called optically thin. This

is a medium that is optically thin and we would also call it transparent okay. So in such a

medium, the typical photon just goes through the medium without interacting with it without

getting absorbed okay.

So typical  photon here just  goes through the medium for an optically  thin medium, it  is

transparent the typical photon goes through the medium without experiencing any absorption

without interacting with the medium such a medium is said to be optically thin and this is

measured  by this  quantity  tau  okay such a  medium is  said  to  be  transparent  and this  is

measured by this optical depth tau.

Tau > 1 it is optically thick so such a medium is said to be opaque what do we mean by this

so this  is  the  optical  depth  and as  the  radiation  goes  through the  medium,  it  is  specific

intensity  falls  off  exponentially  and  if  this  is  a  large  number  then  it  would  fall  off

considerably, there would be a considerable drop inside. So the typical photon essentially

cannot propagate through the medium without being absorbed it is guaranteed to get absorbed

inside okay if tau > 1.

The typical photon in general gets absorbed in the medium okay so this is the significance of

this quantity be optical depth, it gives us a picture, it essentially tells us the probability of a

photon getting absorbed in the medium. If the optical depth is small, the probability is small.

If the optical depth is large, the probability is essentially exponential of e to the power - tau is

the probability okay.



So this quantifies whether a photon will go through the medium without getting absorbed or

whether it will get absorbed in the medium okay and if it is much < 1 it is transparent. If it is

of the order one or more if it is more than 1 it is opaque so this is the optical depth. So it is

convenient to write down the radiative transfer equation in terms of the optical depth. We also

define another quantity called the source function.

(Refer Slide Time: 30:57)

So if you divide this by alpha nu the equation now becomes let me write down the equation,

the same equation now becomes so we have divided this equation by alpha nu and written

this term first, which gives us -I nu and we have this S nu where S nu is the ratio of the

emission coefficient to the absorption coefficient and this is called the source function of the

medium okay.

And quite often these are very useful quantities both of these, the optical depth and the source

function and it is convenient to think of everything now as a function of the optical depth

okay and the optical depth is the very useful quantity. It is convenient to think of this equation

in terms of the optical depth. It tells us the appropriate intervals as far as the interaction with

the medium is concerned okay.

So that it  quantifies the appropriate intervals along the way as far as interaction with the

medium is concerned. The length may increase a lot, but if the optical depth does not increase

much it is of no relevance for the propagation of the radiation because the specific intensity is



going to remain same, whereas if the optical depth changes drastically over a small length

then it is that interval, which is important right.

So if you work in terms of the optical depth you are now going to see the intervals that are

important for interaction with the medium okay so that is one of the very great importance of

using the optical depth okay. So we are going to work in terms of the optical depth everything

here is now a function of the optical depth and not of the length along the ray okay everything

is a function of the optic tau.

Second thing is the source function is a ratio of the emission coefficient to the absorption

coefficient. Quite often this is a physically simpler quantity to calculate than the emission

coefficient itself.  So this also has got great utility of the source function okay. So we are

going to solve this equation in the radiative transfer equation in this form. The way to solve

this equation so we are going to work out the formal solution to this equation.

The way to proceed is as follows. We multiply this entire equation with e to the power tau. So

let us multiply this equation with e to the power tau and we define so let us do that. So if I

multiply this equation with e to the power tau then I can write it in this way and we can now

integrate  this  equation  straight  away  because  this  is  what  you  want.  This  is  the  known

function on the right hand side.

We are assuming that the source function is known so this is a known function on the right

hand side, this is unknown you want to find this, this just integrate this. So it is quite straight

forward now to write down the solution, just integrate this with respect to tau and then divide

throughout by e to the power tau and we will integrate from tau = 0 to some value of tau

okay.

So I will write down the solution straight away. So we are going to integrate this equation

from 0, 0 is where the light enters the medium and tau is the value of the optical depth where

we are interested in the specific intensity. So this will be equal to the e to the power -tau I nu

0 at tau = 0 this term does not contribute. So when I divide by e to the power tau I get e to the

power - tau I nu 0.



And we have one more term, which is this into an integral which is I have to do the integral 0

to tau integral of the source function. So S nu tau prime e to the power now you see I am

doing this integral and the variable is now becoming tau prime so I have e to the power tau

prime d tau, but I am going to divide with e to the power tau at the end of the day so we can

write this as e to the power -tau -tau prime d tau prime where that is the formal solution okay.

So this formal solution to the radiative transfer equation so we have solved it in general, but

life is not so simple okay. So the formal solution does give us something, but it does not

always not very easy to apply in all  situations  okay. Let us first  physically  interpret  this

equation the formal solution. What are the 2 effects that have gone in? So the first thing that

you see is this term over here.

(Refer Slide Time: 38:00)

So let me draw a picture. This is my medium on this side, this is tau = 0 and this is the ray

that we are following so at tau=0 we have some incident specific intensity I nu 0. As it goes

inside, we are interested let us say at this point so as it goes inside it gets attenuated by an

amount e to the power - tau, which we have just seen that is the solution when you have only

absorption so which is the first term that you have over here.

Whatever  is incident gets attenuated by an amount e to the power - tau where tau is the

integral of this absorption coefficient along this line. The second effect that you have is that

each point over here is itself going to contribute to the specific intensity and that is going to

contribute by this source function okay. So the point over here at some tau prime is going to



contribute and it is going to again suffer an attenuation that is not the entire tau, but the

difference tau - tau prime by this much right.

So we have to take the source function at this point and attenuated by e to the power -tau -tau

prime and then add up the contribution from all of these points, which is this term over here

okay.  So  this  is  the  contribution  from  the  radiation  along  the  path  and  each  point  the

contribution gets attenuated again as it propagates through the medium okay so this is the

formal solution to the radiative transfer equation.

Now as an example so we can first of all straight away see that we recovered the very simple

situations that we had considered right at the start where there is only emission and where

there is only absorption. Those you can recover straight away.

(Refer Slide Time: 40:32)

Let us now consider  a situation  where the S nu is  the constant,  it  does not change with

position, it is a homogenous medium. The source function is a constant. So we are going to

assume that S nu the source function is the same throughout this entire region okay. If the

source function is the same through this entire thing, we could then do this integral, this term

will come outside and e to the power - tau will also come outside so we have an integral of e

to the power tau prime d tau prime right.

We have just an integral of e to the power tau prime because this - and - sign here e to the

power tau prime d tau prime and the limits of the integral are tau to 0. So if you do this

integral e to the power tau prime let me write down the integral. So we have the integral the



second term now becomes e to the power this S comes out, e to the power - tau comes out

and we have e to the power tau prime d tau prime that is the second term.

The first term is unchanged anyway, second term becomes this and this can be written as S e

to the power - tau and we have e to the power the integral of this is again e to the power tau

prime so and the 2 limits we have e to the power tau - 1 okay. So this is S 1 - e to the power -

tau. We have just evaluated the second term and we can now plug it back in this.

So if I plug it back in this what do I get? I get the fact the solution is that I nu the specific

intensity  so  we  will  have  the  constant  term S  nu,  the  subscript  nu  is  the  throughout  at

particular frequency. So this is going to be S nu+ we have this term already here and we have

this term which has to be added to it so what we get is +I nu 0-S e to the power - tau okay. So

that is what happens when light propagates through a medium, which has a fixed source

function. It does not change with place okay. 

Let us try to understand what happens. So the light when it enters this medium its specific

intensity is I nu 0, the source function is S nu inside. Now let us see what happens here as it

goes deeper and deeper into this medium, the value of tau increases and as the value of tau in

the limit where tau goes to infinity tau is very large, the specific intensity then becomes just

the source function okay.

(Refer Slide Time: 45:04)

So given sufficient optical depth, the specific intensity will tend to the source function, it will

relax, this is the relaxation. The value of the specific intensity will relax to the value of the



source function so provided there is sufficient optical depth okay. So if there is sufficient

optical depth, the specific intensity inside the medium will tend to the source function, it will

be just equal to the source function whatever it comes in with.

If it comes in 0 also does not matter it will finally just become the source function inside

provided it is optically thick okay.

(Refer Slide Time: 45:51)

So that is the first thing so the first property is provided the optical depth is very large. The

second point suppose the light enters a medium where the source function is more than the

specific intensity, so the light here is entering a medium where the source function is more

than the specific intensity of the ray what happens then the medium essentially pushes the

specific intensity up that is what we see here.

It pushes the specific intensity up so this implies that the specific intensity will go up inside

that medium. Similarly, if the source function is less than the specific intensity, it will bring it

down and given enough optical depth it will bring it to exactly the same value as the source

function okay. So the source function rises the specific intensity up if it  is more than the

specific intensity, it brings it down if it is less and given sufficient adequate optical depth it

will bring it to the same value, it will relax to the same value as the specific intensity okay.

So this is a rough picture of what happens when radiation propagates through some medium

where you have both absorption and emission okay. So picture is quite simple, but its life is

not so simple okay. There is a process called scattering, which we have not discussed. We



have not discussed any specific process as yet, but scattering makes life very complicated if

you are dealing with radiative transfer.

If you have scattering, the light that is incident gets spread into different directions so the

emission  coefficient  or  the  source  function  is  essentially  related  to  the  incident  specific

intensity. I cannot specify it a prior right because the source of the light is the incident light

itself in scattering. In scattering light comes in and it gets scattered into different directions

okay. Example, light is propagating through some let say glass, which has rough surface okay

glaze glass.

So the light that is incident itself gets scattered in other direction so that is again a source for

the light in some other direction so the source itself is dependent on the specific intensity that

is incident and this makes the problem extremely complicated. The formal solution is just a

solution, but you do not know then what this S nu is. It is dependent on the I nu okay so this

is of not much use there okay.
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So having discussed this let us now ask the question what is the mean free path of radiation

inside a medium. So this is a medium, the radiation is propagating, this is radiation incident

on a medium again the same question okay I have a picture over here already. So there is

radiation incident on a medium. We know the idea of a mean free path on the average how

much distance does a photon propagate before it gets absorbed that is the mean free path.

How much distance does a photon propagate before it gets absorbed?



Here we are talking in terms of distances not in terms of optical depth okay. So the question

is how much distance does a photon propagate inside the medium before it gets absorbed a

typical photon on the average okay. So we want to calculate this. Now we have seen that the

probability of a photon getting absorbed after an optical depth tau is e to the power - tau. The

probability that a photon gets absorbed at an optical depth tau is e to the power - tau.

We know this because the specific intensity falls as e to the power - tau so that many photons

the fraction of the photons that have been absorbed is e to the power - tau okay. So that is the

probability that a photon is absorbed at e to the power - tau at this optical depth tau. So let us

ask the question what is the typical optical depth of a photon inside a medium before it gets

absorbed.

So that is easy to calculate we have to do this integral tau e to the power - tau you want to

calculate  the  average  optical  depth  of  a  photon  where  it  gets  absorbed  and  we have  to

integrate this from 0 to infinity okay. Considering an infinite medium where every photon

will  get  absorbed we want to calculate  the average optical  depth at  which a photon gets

absorbed.

So this is the mean optical depth at which a photon gets absorbed and this we see = 1. If we

just do this integral it comes out to be 1 right d tau. We have to integrate over all possible

optical depths and this integral comes out to be 1. Now the main optical depth we can write

as  a  mean free path,  the mean value  of  L the  distance  it  propagates  into the absorption

coefficient so this is 1 that is the definition of optical length.

The optical depth is the distance into the absorption coefficient and the mean optical depth is

the  mean  distance*the  absorption  coefficient.  We are  assuming  that  this  is  a  constant

throughout. So here we see that the mean free path is essentially the inverse of the absorption

coefficient  okay.  A point  I  forgot  to  mention,  the  optical  depth  is  dimensionless.  The

absorption coefficient has dimension of 1 by the length okay.

That you can check from the definition and the mean free path is 1/the absorption coefficient

that is the mean free path of a photon in a medium and if the absorption coefficient there is no

mean over here it is just the mean free path is at a particular frequency nu is 1/the absorption

coefficient okay. Finally, let me discuss one more thing very briefly.
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The question is when a radiation propagates through a medium so it transfers energy to the

medium.  Now if  it  transfers energy we know that  a photon also has momentum and the

energy and momentum are related as P = e/C.  So we ask the question what  is  the force

exerted by the radiation to the medium okay force per unit volume, so that force in a medium,

when a radiation propagates through a medium not all of it gets absorbed in 1-unit volume.

The part  that  gets  absorbed is  essentially  I  nu * absorption coefficient  alpha nu per  unit

volume that  is  what  gets  absorbed and this  has  a  direction  of  propagation  n  that  is  the

direction of the force. So if you want to calculate the total force on a volume element dV, we

have to integrate this divided by C over all solid angles. This is the radiation force on some

medium.

So  when  a  medium absorbs  radiation  it  also  absorbs  momentum  and  you  have  a  force

therefore you can have a net force, the radiation is coming from one direction you will have

force in that direction being transfer acted on the medium because of the incident radiation

getting absorbed okay and this is the force. It is the incident radiation specific intensity into

the absorption coefficient divided by C.

Because that is the relation between the momentum and the energy integrated over all solid

angle and n is the direction we have to consider rays in all directions okay. So let me end

today’s class over here, tomorrow we shall continue our discussion of radiation little further.


