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Derivation of the moment equations I 

 

Hello and welcome to another lecture of Introduction to Astrophysical Fluids. Previously we derived both 

collisionless and collisional Boltzmann equations. Today we will learn how to derive the moment equations 

starting from these equations. 
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So, as I said that we have already derived the collisionless and the collisional Boltzmann equations. So, 

collisionless equation you have  

𝜕𝑓

𝜕𝑡
+ (𝒖 ⋅ 𝛻)𝑓 + (𝒂 ⋅ 𝛻𝒖)𝑓 = 0 

 

 

And in case of collisional systems we have the same thing in the left hand side, but the right hand side gives 

us a collision integral which symbolically we just write,  (
𝛿𝑓

𝛿𝑡
)

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 and we know that for normal elastic 

binary collision which is a very simplistic case, but which is somehow very reasonable for microscopic cases. 

For example, the I mean kinetic systems of gas molecules. So, for this the collisional integral term should look 

like this one. That is, ∫ 𝑑3𝒖1∫ 𝑑Ω𝜎(Ω)|𝒖 − 𝒖1|(𝑓′𝑓1
′ − 𝑓𝑓1) . 



Once again the prime coordinates are the distribution functions after the collision and the unprimed the 

distribution functions before the collision. So, here you can again, just for reminder, 𝒂 is the acceleration and 

this is nothing but the body force by the mass of one particle. 
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Now, as I just said that both these equations (1) and (2) are in general giving the evolution equation of 𝑓 that 

you can see here. And therefore, they are the equation of evolution for the kinetic level right.  As I said in one 

of the previous lectures actually that we are actually trying to develop dynamical theory at different level. So, 

it is the kinetic level dynamical equation of evolution. 

So, we need for every dynamical system an equation of evolution and of course, before that we need a well 

defined state. So, this is the equation of evolution. Now, the question is that we all have this and as I just 

promised that this in this lecture we will basically learn how to obtain the moment equations. So, that is 

something we have to now learn. 
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So, for that we first have to define what moments are. So, in the present context moment means simply velocity 

moments and velocity means kinetic velocity, that means, 𝒖. So, a statistical moment of order j for velocity is 

simply defined by 𝑀𝑗 which is a function of 𝒓 and t; that means, only space and time that will be simply equal 

to ∫ 𝑓[𝒖]𝑗𝑑3𝒖 . 

So, this is a vectorial j so; that means, if it is like, let us say let us say [𝒖]3, then this is nothing, but 𝒖⨂𝒖⨂𝒖. 

So, this is the thing and so, that is integrated over the velocity space which is normalized by ∫ 𝑓𝑑3𝒖 . 
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. 

And already during the derivation of Liouville’s equation we have learnt that this is nothing, but the number 

density right. So, every time for the normalization, every averaged quantity should be normalized by or should 

be divided by the number density in order to get the normalized value of the statistical moment. 



So, a moment equation is nothing but an evolution equation of the velocity moments of different order. So, 

this is the moment of order j for the kinetic, velocity now a moment equation is nothing but the equation which 

involves the 𝜕𝑀𝑗

𝜕𝑡
 . 

Now, let us again write down the proper definitions of different moments of the velocity. So, for 𝑀0 you can 

easily understand that this is simply 𝒖0 , so, then this will be the both the numerator and the denominator they 

will be the number density. So, this will be 1. So, when I just say 1; that means, you can actually instead of 

using one you can use any arbitrary constant. 

𝑀1 will be obtained if we put j is equal to 1. So, it will be simply,  ∫ 𝑓𝒖𝑑3𝒖

𝑛
 and which is nothing but the average 

value of 𝒖 and this is known as 𝒗 okay. So, average value of 𝒖 we will call it 𝒗. 

And actually you will understand later that v is something which is similar to the macroscopic velocity. Then 

what is the moment of the second order? As I just said that will be simply nothing, but the < 𝒖⨂𝒖 >. Moment 

of third order for example, you know now that it will be then  < 𝒖⨂𝒖⨂𝒖 >. 

Once again when I use this angular bracket symbol that simply says that this for example, this says that this is 

∫ 𝑓(𝒖⨂𝒖)𝑑3𝒖

𝑛
. So, if I just want to hint at this integral that will be  𝑀2 𝑛 = ∫ 𝑓(𝒖⨂𝒖)𝑑3𝒖  .  So, once again, the 

angular bracket means that the integration of that quantity along with the distribution function in the velocity 

space divided by the number density. 
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. 

Now, let us write the definitions accordingly and for that for that we can easily say that as our also previous 

knowledge says that ∫ 𝑓𝑑3𝒖 is nothing but the number of particles per unit time per unit volume. So, only f  is 

nothing but the number of particles per unit phase space volume. 



Now, when you integrate this in the velocity space then it will simply be the number of particles per unit real 

volume and that is nothing but our particle density or number density n. 
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. 

Then what is < 𝒖 >? Already I defined this is 𝒗. < 𝒖⨂𝒖 > so, this is one by  ,  already I discussed about these 

things. Now, this thing  𝑚𝑛 < 𝒖⨂𝒖 > . So, one thing you should that should be clear that < 𝒖⨂𝒖 >   for 

example, should have a dimension of 𝒖2.  

So, 𝑚𝑛 < 𝒖⨂𝒖 >  is nothing but, so, n is the number density m is the mass of one particle. So, mn is the mass 

density. So, mass density times 𝑢2. So, you can easily understand this is nothing but something like the volume 

density of energy and you can actually check in the standard literature this is known as the momentum flux 

density tensor. 

 So, basically if you see that the density of momentum is nothing but roughly 𝑚𝑛𝒖. And when this is somehow 

multiplied of course, here it is tensorly multiplied, but somehow multiplied with another velocity it gives you 

the corresponding flux density type of thing. Once again this is the definition and this is the standard second 

order moment for our case. 
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. 

Now, in order to obtain a general j-th order moment equation that is an equation containing 𝜕𝑀𝑗

𝜕𝑡
 . The 

straightforward way is to multiply both sides of (1) and (2), (1) and (2) just for recapitulation are nothing but 

the collisionless and the collisional Boltzmann equations. So, we just have to then multiply both sides of those 

two equations by this corresponding 𝑀𝑗 and then we have to integrate that in velocity space. 

 First, we have to multiply by [𝒖]𝑗 and then to integrate in velocity space. 
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. 

So, as you can easily understand that for collisionless case that is that is written here. So, to perform the above 

action which I prescribe here is very direct and very easy for one that is the collisionless Boltzmann equation, 

because the right hand side is 0. So, if you just multiply something with this that will be 0 and then you 

integrate over a closed volume, then that will also give you 0 and then, the corresponding moment equation 

should look like simply 



                                                         ∫ [𝒖]𝑗 [
𝜕𝑓

𝜕𝑡
+ (𝒖 ⋅ 𝛻)𝑓 + (𝒂 ⋅ 𝛻𝒖)𝑓] 𝑑3𝒖 = 0.   

So, for the collisionless case 0 is guaranteed, but for the collisional case the right hand side is 0 only for special 

cases. In general, once again the right hand side is not zero for collisional case and we have a term like 

∫ [𝒖]𝑗 (
𝛿𝑓

𝛿𝑡
)

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
𝑑3𝒖 .  
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. 

So, it is evident that anything or any function can be multiplied to the LHS of collisionless Boltzmann equation 

because the RHS will also always be zero. And then that will be easier to handle because you see that the 

collision integral itself is not a very simple quantity. 

So, when you have the collision integral for something where you know the system; that means, you just have 

binary elastic collision that is or in any other simple case where you have load models.  But in an arbitrary 

case it is not really a guaranteed that you can always model the collision integral sufficiently or sufficiently 

accurately. Then what happens that I mean the analysis is incomplete. So, you cannot proceed further. 

So, that is why it is good that in some sense if the right hand side is already 0 because, so, the left hand side 

is somehow known, but the right hand side is not always known, the right hand side is known only for binary 

elastic collisions and some very limited cases. 

So, in the next part you will see that for some cases the right hand side basically becomes 0. So, for collisional 

systems the RHS is not automatically 0; however, if we multiply both sides of the collisional Boltzmann 

equation by a variable 𝜒 just remember which is an independently conserved quantity in an elastic binary 

collision for example. So, even for elastic binary collision you know like I mean integrating the total collision 

integral is not trivial. 



So, for example, at least the challenge is that at least for binary elastic collision can we do something. So, that  

we can get rid of the collision integral. 
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So, but once we know that, we can actually try to incorporate this for any arbitrary interaction as well. So, that 

we then always will search for some variables which are conserved in this type of interactions as well. 

Now, whether this is always equally easy or not that is a question. Now, at least for binary collision how to 

handle the how to get rid of the collision integral, in the moments equation. Then the answer is that, if we 

multiply with some independently conserved quantity let us say 𝜒. You know for example, the numbers, the 

components of velocity, the kinetic energy. 

And then integrate in the velocity space, then we get something very interesting for the RHS. Why? Because 

then the RHS becomes simply that I call I simply which is nothing but  

𝐼 = ∫ 𝜒 (
𝛿𝑓

𝛿𝑡
) 𝑑3𝒖 = ∫ 𝑑3𝒖∫ 𝑑3𝒖1∫ 𝑑Ω𝜎(Ω)|𝒖 − 𝒖1|(𝑓′𝑓1

′ − 𝑓𝑓1)𝜒
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Now, just by observation you can easily check that this integral I , which I have written over here just becomes 

this; this one. If you simply swap between the 𝒖 and 𝒖1. Then what happens? Of course, all the 𝒖 will be 𝒖1 

and then  𝜒 will be now 𝜒1. Because 𝜒1 is nothing but 𝜒(𝒖1), then f will be 𝑓1 and 𝑓1 will be f and same thing 

for 𝑓′  and 𝑓1′. 

Now, so, in this integral I simply blindly because I mean the this is an integral where the integration is done 

on both 𝒖 and 𝒖1 space then I can just say that if I interchange between 𝒖 and 𝒖1 nothing will change in the 

final value of the integration right. 

Now, I can easily say that, I will now say my 𝒖1will be 𝒖 and 𝒖 will be 𝒖1. So, then the one thing I have to 

check that what will be the change in, 𝑑3𝒖1𝑑3𝒖  if they are changing no problem because integrations on both 

the space this one will also not change because this depends if you remember the previous discussion depends 

on the set of initial velocities 𝒖 and 𝒖1. So, a swapping between them cannot change 𝜎(Ω)𝑑Ω . Remember 

when we were deriving the collision integral we talked about this. 

And what about |𝒖 − 𝒖1|? This is also cannot be changed because this is the modulus. Here I mean if you just 

change between the 𝑓 / 𝑓1  and 𝑓 prime and 𝑓1 prime nothing will change. So, finally, your I will be the same.  

So, as both are I. So, I can be now written as half times a sum of these two integrations  

𝐼 =
1

2
∫ 𝑑3𝒖∫ 𝑑3𝒖1𝑑Ω𝜎(Ω)|𝒖 − 𝒖1|(𝑓′𝑓1

′ − 𝑓𝑓1)[𝜒 + 𝜒1]
 

 

 

 



 And that means, the all the other factors are common only I have a sum of 𝜒 and 𝜒1 . 
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. 

Now, in the next step we perform another swap between the unprimed and the prime variables. And that 

means, that before collision the variables will now be primed and after collision the variables will be unprimed. 
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We also suppose that in our case, the elastic collisions are usually reversible in nature. So, that is why they 

are I mean the collisional cross section or the 𝜎(Ω)dΩ will not change. So, if I simply say that if I just swap 

between primed and unprimed coordinates, then I can again be blindly written as  

𝐼 = ∫ 𝑑3𝒖′∫ 𝑑3𝒖′
1∫ 𝑑Ω′𝜎′(Ω′)|𝒖′ − 𝒖′

1|(𝑓𝑓1 − 𝑓′𝑓1′)𝜒′ 

 



 

 

 all these quantities inside they are just the dummy variables. 

Now, if they are the dummy variables basically, I mean the quantities on which the integration is done they 

are dummy variables. 

Now, you can simply say that I am studying the reverse collisions. So, I am simply saying that I am just trying   

to do the same type of integration for the reverse collision process or inverse collision process. Then all the 

unprimed variables will be changed with primed variables. 

Now, check that according to the reversibility the collision cross section integral will be unchanged. And so 

will be the relative velocity, as we already discussed that in a binary elastic collision, the relative velocity 

before and after the collision of the two particles they are the same. That is again the same thing of saying the 

coefficient of restitution is 1. The term involving distribution functions will its sign. 

Now, what about ∫ 𝑑3𝒖∫ 𝑑3𝒖1? 

Remember when we were deriving the collision integral we said that if we suppose that the two particles 

which are colliding then during the collision or rather at the moment of the collision basically; if we assume 

that at that point when the collision takes place there is no other interaction other than the force of collision 

experienced by these two particles, then for these two particle system we can define a Hamiltonian system. 

And if we can define the Hamiltonian system, then for that two particle system we can apply the Liouville’s 

theorem. And then again just remember the corollary of the Liouville’s theorem for this two particle system 

where you can have 𝑑3𝒖′𝑑3𝒖1
′ = 𝑑3𝒖𝑑3𝒖1, along a trajectory. 

So, that we can use. If we can use that then simply you can write that I is now equal to minus everything is 

the same of the original I, but only 𝜒 is replaced by 𝜒1.  

𝐼 = −∫ 𝑑3𝒖∫ 𝑑3𝒖1∫ 𝑑Ω𝜎(Ω)|𝒖 − 𝒖1|(𝑓′𝑓1
′ − 𝑓𝑓1)𝜒′ 

 

Again we are always in the being direction of the inverse collision if we now change between 𝒖′ and 𝒖1′  then 

there will be actually no change. So, from the original I we again have this type of expression where we have 

minus sign. And this multiplicative variable will be then 𝜒1′ which is nothing but 𝜒(𝒖1′). 
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Finally, as all of them are equal and equal to I then you can write I is equal to 

  

𝐼 =
1

4
∫ 𝑑3𝒖∫ 𝑑3𝒖1𝑑Ω𝜎(Ω)|𝒖 − 𝒖1|(𝑓′𝑓1

′ − 𝑓𝑓1)[𝜒 + 𝜒1 − 𝜒′ − 𝜒1′]
 

 

You see in the deep green color, the total expression. 

And this is the expression for the collision integral when it is multiplied by something which is conserved in 

a binary elastic collision. Actually, the collision need not be binary elastic. Now, the thing is that if you have 

an arbitrary collision just if something which is conserved in that collision then actually you can search this 

for this type of thing of course, you have to be careful that, all the type of intermediate suppositions or 

hypothesis they are also satisfied. 

For example, whether you can apply this type of intermediate Liouville’s theorem for two particle systems or 

not this type of thing. So, this is subtle, but now for our present case, you can simply say that, the collision 

integral when this is multiplied by something which is a conserved quantity of a binary elastic collision and 

then integrated over the velocity space gives us an expression which looks like the above equation and due to 

the conservation 𝜒 + 𝜒1 − 𝜒′ − 𝜒1′ vanishes. 

So, finally, I can say that the integration, I, will vanish. So, although in collisional Boltzmann theorem or 

Boltzmann equation the right hand side is not zero. For binary elastic collision at least, the thing is that when 

we are trying to derive the moments equations, 



then if it is a moment, which is a velocity moment, is conserved in a binary elastic collision then after 

integration the right hand side is vanishing. That is why we finally, get rid of the right hand side in the moment 

equation. 
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So, for collisional moment equation what I just said the right hand side vanishes only when the corresponding 

moment is a conserved quantity of binary elastic collision. For example, number density which is nothing but 

the velocity to the power 0, component of velocity which is nothing but a corollary of the conservation of 

momentum components. 

Here this is just the component of velocity because in microscopic case all the gas molecules they have same 

mass, gas molecules or any system molecules. Then 𝒖2 this is also another thing which is coming from the 

kinetic energy conservation. 

So, if we multiply the I mean for collisionless Boltzmann equation this is always 0, for collisional Boltzmann 

equation the right hand side is 0 only after integration if they are multiplied by this type of thing or any other 

conserved quantity of a binary elastic collision. So, in the next part of the lecture we will try to derive directly 

the moment equations. 

Thank you. 


