
Introduction to Astrophysical Fluids 

Prof. Supratik Banerjee 

Department of Physics 

Indian Institute of Technology, Kanpur 

 

Lecture - 06 

Equilibrium Distribution Function I 

 

Hello. Previously, we derived the collisionless Boltzmann equation or the Vlasov’s equation 

and also collisional Boltzmann equation; which is mostly called the Boltzmann equation 

simply ok. 
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And, if you remember the form, we said that the collisionless Boltzmann equation should 

look like this 

𝜕𝑓

𝜕𝑡
+ (𝒖. 𝛁)𝑓 +

𝑭

𝑚
. 𝛁𝒖𝑓 = 0  

 

where f is the kinetic distribution function right and which can be a function of the position, 

the velocity and time. And so, the equation should look like 
𝜕𝑓

𝜕𝑡
 plus (𝒖. 𝛁)𝑓 plus 

𝑭

𝑚
. 𝛁𝒖𝑓 the 

gradient in the velocity space of f and u is the kinetic velocity, 𝑭 is the body force and m is 

the mass of the one particle. 



And, then we also derived the collisional form of this where this right-hand side was not 

equal to zero. So, that was the collisionless form and for collisional form we had this integral  

∫ 𝑑3𝑢1∫ 𝜎(Ω)|𝒖 − 𝒖𝟏|(𝑓′𝑓′
1

− 𝑓𝑓1)𝑑Ω 

  

which we call the collision integral, where 𝑓, 𝑓′, 𝑓1, 𝑓1
′  are just the distribution functions; 𝑓′ is  

𝑓′(𝒓, 𝒖′, 𝑡)  and here the other two things are kept unchanged 𝒓 and 𝑡 this 𝑓′
1
 will be just 

replaced by 𝑓′
1(𝒓, 𝒖1

′ , 𝑡 ). 𝑓 was 𝑓(𝒓, 𝒖, 𝑡) and this one 𝑓
1
 was function of 𝑓

1
(𝒓, 𝒖𝟏, 𝑡). This is 

true this collision integral is valid when we were considering binary collisions of two 

particles okay. So, they collided and before collision they had velocities 𝒖 and 𝒖𝟏 after 

collision they had velocities 𝒖′and 𝒖𝟏′ okay. 

So, this was only model for binary collisions, elastic in nature. So, binary elastic collisions 

should be there and then only we can model the effect of the collision or rather this is the, I 

mean this is  

∫ 𝑑3𝑢1∫ 𝜎(Ω)|𝒖 − 𝒖𝟏|(𝑓′𝑓′
1

− 𝑓𝑓1)𝑑Ω 

 the net change so, if you remember this one this is 
𝜕𝑓

𝜕𝑡
+ (𝒖. 𝛁)𝑓 +

𝑭

𝑚
. 𝛁𝒖𝑓 nothing but 𝐷𝑓/

𝐷𝑡. So, I mean if you just follow one trajectory of evolution in the phase space so, the time 

rate of change of the distribution function will be exactly equal to this one 𝐷𝑓/𝐷𝑡  ok. So, 

this model is not a general model for any arbitrary collision, it is for a very simplistic case 

right. 

Now, using this integral we now want to fetch some information about the nature of the of the 

distribution 𝑓, I mean; the nature of the distribution function for a gas or a classical system of 

particles which are left for long time and we will see that towards which distribution the 

system tends to relax itself and that will we will call the equilibrium distribution function of 

the system 𝑓
0
. 

Now, one thing I have to mention here, if you remember here, I just changed in these four 

terms involving the distribution function, I only changed the 𝒖′𝑠 ok; here 𝒖′, 𝒖𝟏
′ , 𝒖 and 𝒖𝟏, 

but I did not change 𝒓 that was because the collisions were assumed to take at one point in 



space. So, just before and after the collision, no change in position or no considerable change 

in position took place ok, that was the assumption. 

Now, we will try to formulate 𝑓
0
. Let us consider, how to know the functional form of it ok. 
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Let us assume a gas a classical gas or rather an ensemble of molecules; here I am not talking 

about the ensemble at phase space, but ensemble of molecules means just a collection of 

molecules, classical molecules which are interacting within themselves just by in terms of 

elastic binary collisions and then we just let it evolve without any force or anything ok. So, 

the system is just left to evolve freely and then we will try to understand what is the 

distribution function for that. 

Now, Maxwell in the year 1860, he already pointed out that such a classical gas if it is 

uniform or homogenous; that means, the density of the gas is equal at every point in space. 

So, for a uniform classical gas 𝑓
0
 should be Maxwellian distribution. Now, what is that and 

how to really show that; that exactly we will do here ok.  

So, here we will try to do this directly from our collisional Boltzmann equation. So, 

collisional Boltzmann equation will give us  
𝜕𝑓

𝜕𝑡
+ (𝒖. 𝛁)𝑓 +

𝑭

𝑚
. 𝛁𝒖𝑓 = 𝐶. 𝐼 ; 𝒂, I just write the 

acceleration which is 𝑭/𝑚, is equal to the collision integral; 𝐶. 𝐼 this is the collision integral 

the whole integral. 



Now, we have to construct by, I mean using step by step assumptions the form of 𝑓
0
 ok. So, 

if this  

𝜕𝑓

𝜕𝑡
+ (𝒖. 𝛁)𝑓 +

𝑭

𝑚
. 𝛁𝒖𝑓 = 𝐶. 𝐼 

is true for all 𝑓 then of course, this is also true for 𝑓
0
 ok, it is true. 

𝜕𝑓
0

𝜕𝑡
+ (𝒖. 𝛁)𝑓

0
+

𝑭

𝑚
. 𝛁𝒖𝑓

0
= 𝐶. 𝐼 

 Now, one thing we have to understand that if the gas is left for long time, then if it will tend 

towards an 𝑓 which is equal to 𝑓
0
 that 𝑓

0
 should be independent of time, should not explicitly 

depend on time ok. That is why we can write 
𝜕𝑓0

𝜕𝑡
  will be equal to 0, that is somehow 

reasonable ok. 

So, because when the system is left for long time then the system is expected to attain a 

steady state. So, all the properties including the very basic distribution function should not be 

a function of time then, right. The system will always try to tend to the equilibrium and when 

it attains the equilibrium point, then it will hardly change with time, this is the concept behind 

it. 

And, again we can say that the equilibrium distribution function is also independent of 𝒓; that 

means, 𝜵𝑓0 = 0 ok. So, it simply says that if let us say if 𝑓
0
 is a function of 𝒓, then you all 

know now that when 𝑓
0
 is just integrated in the velocity space then it will give us density and 

if there is a 𝒓 dependence then when it is integrated over velocity space, here it will have also 

an 𝒓 dependence;  

∫ 𝑓0𝑑3𝒖 = 𝑛(𝒓)  

that means, uniform gas will no longer be uniform right. So, for any uniform gas, so, 

basically here you do not need to wait for long time, you just say my gas is homogenous or 

uniform then the density should be a constant, right and it should be uniform everywhere in 

the space, right and then of course, the thing is that this type of 𝒓 dependence should not be 

there ok so, this will be thing. So, the only dependence should come from the velocity, then 

𝑓
0
 will be simply a function of velocity that much we can conclude till now ok. 

𝑓
0

≡ 𝑓
0
(𝒖) 



Now, if you see that the left-hand side of the whole equation, whole collisional Boltzmann 

equation, this term 
𝜕𝑓0

𝜕𝑡
 is vanishing, this term (𝒖. 𝛁)𝑓

0
 is vanishing because 𝜵𝑓0 is 0 and what 

about this term 
𝑭

𝑚
. 𝛁𝒖𝑓

0
? Is this also vanishing? Well, when we are talking about equilibrium, 

at equilibrium 𝒂 or 𝑭/𝑚 is 0 because equilibrium is assumed from mechanical consideration: 

a state where you have 0 force so it is a force free state. 

So, the third term is also 0 because 𝑭 is 0 there, I can actually I mean even reason from here. 

So, this one  
𝜕𝑓0

𝜕𝑡
  is 0, this one  𝛁𝑓 is 0, this one 𝒂 is 0 so, the whole left-hand side is 0. So, 

the right-hand side should also be identically 0. 
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So, the collision integral should identically vanish at equilibrium ok. So, we can simply write 

∫ 𝑑3𝒖𝟏∫ 𝜎(Ω)|𝒖 − 𝒖𝟏|(𝑓0′𝑓0
′
1

− 𝑓0𝑓01)𝑑Ω = 0 

 So, I have just replaced every 𝑓 by its 𝑓
0
 value because we are talking about equilibrium. So, 

this will be the new thing and then it is integrated over this is identically 0 and this is true for 

any arbitrary choice of 𝒖𝟏, Ω. So, the only condition by which it can be true is 

𝑓
0
′

 𝑓01′ = 𝑓
0
𝑓

01
 



 that means, that the integrand itself should vanish ok. So, you see you have the product of 

two equilibrium distribution functions before and after the collisions are unchanged and then 

if you take the natural logarithm, you can say 

ln  𝑓
0
′ + ln  𝑓

0
′

1
= ln  𝑓

0
+ ln  𝑓

01
 

 

 So, you see that this is simply like something, I mean when you talk about the momentum 

conservation or energy conservation before and after the collision let us say the particles are 

of equal mass m then for example, for momentum conservation you say let us say for 𝑥 

component conservation, right.  Say 

𝑢𝑥
′ + 𝑢1𝑥

′ = 𝑢𝑥 + 𝑢1𝑥 

This type of thing we write for momentum conservation. So, here this is the actually, it looks 

that this analogous thing right over here. So ln 𝑓
0
 is a quantity which is conserved in a 

collision of course, which are binary and elastic in nature; because otherwise this collision 

integral form will not be the same. 
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Now, you also know that ln 𝑓
0
  is a function of 𝒖 because 𝑓

0
 is a function of 𝒖. Now, we will 

do a trick. Let us now assumed that some function 𝜒𝑟(𝒖), which is a function of 𝒖, is 

conserved in collision and if we find n number of such quantities so that, 



𝜒′𝑟 + 𝜒𝑟1
′ = 𝜒𝑟 + 𝜒𝑟1 

you have this and where all of them are function of velocity in general and the 𝜒𝑟 are 

mutually independent; now there is an important thing: mutually independent that means, 

they are independently conserved. 

One conservation does not depend the on the conservation of the other. For example, if you 

are considering the conservation of momentum, you can think the three components of the 

momentum will be conserved in a collision separately or individually, right. So, the three 

components they are conserved being independent of each other and there is another 

independent conservation which is also a pure function of velocity that is the kinetic energy, 

right. 

There is another conservation which we do not talk in general that is the conservation of 

number, right. So, the number of the particles they are also conserved before and after the 

collision. Then if you just put 𝒖0 over there then you will see that is 1 plus 1 will be equal to 

1 plus 1. So, 2 particles will be 2 particles ok. 

So, now, all this the number conservation, the conservation of the momenta: the linear 

momentum, component wise of course, and finally the conservation of kinetic energy, all are 

the mutually independent conserved quantities in a collision. We can finally, write ln 𝑓(𝒖) 

which is a conserved quantity of collision as a linear combination of all these conservations 

ok. 

ln 𝑓(𝒖) = 𝐶0 + ∑ 𝐶𝑟 𝜒𝑟 (𝒖)

𝑛

𝑟=1

 

Of course, here we are just assuming that we have found all the conserved quantities. So, 

basically 𝜒𝑟  they will form a basis and any arbitrary conserved quantity in an elastic binary 

collision will then be expressible in terms of this. So, the 𝐶0 can be absorbed inside the 

summation and then you have to just write r is running from 0 to n and 𝜒0 should be just 1, 

ok. So, in this way you can write the whole thing. 

Now, assume that in case of simple mechanics, microscopic theory in a classical framework, 

we only have the conservation of number, conservation of the three components of linear 



momentum and conservation of the kinetic energy, that completes the basis ok. We do not 

have any other conserved quantities. If we assume that, then we can write; for our case  

                            ln 𝑓(𝒖) = 𝐶0 + 𝐶1𝑢2 + 𝐶1𝑥𝑢𝑥 + 𝐶2𝑦𝑢𝑦 + 𝐶2𝑧𝑢𝑧  

So, 𝐶1𝑢2 : this is the form coming representing the kinetic energy conservation; then three 

components are conserved individually for the linear momentum and I am just writing this as 

𝐶1𝑥𝑢𝑥 + 𝐶2𝑦𝑢𝑦 + 𝐶2𝑧𝑢𝑧, all the 𝐶1𝑥, 𝐶2𝑦, 𝐶2𝑧  are constants ok. 
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If we can write this, then by little manipulation we can also write 

ln 𝑓(𝒖) =  −𝐵(𝒖 − 𝒖𝟎)𝟐 + 𝑙𝑛 𝐴 

So, you can easily express 𝐵, 𝒖𝟎 and A in terms of 𝐶0, 𝐶1, 𝐶1𝑥, 𝐶2𝑦 and 𝐶2𝑧. 

I can do the first one. So, if you just write this thing like 

−𝐵(𝒖 − 𝒖𝟎)𝟐 + 𝑙𝑛 𝐴 =   𝐶0 + 𝐶1𝑢2 + 𝐶1𝑥𝑢𝑥 + 𝐶2𝑦𝑢𝑦 + 𝐶2𝑧𝑢𝑧 

just by matching the powers of u in both sides you can simply say  

𝐵 =  −𝐶1 



that is the first thing that you can easily see from match, I mean by matching the powers 

of 𝑢2. 

Then you can also say  

−𝐵𝑢0
2 + ln 𝐴 = 𝐶0 

but here you have one unknown 𝐵 is known,  it is expressed in terms of 𝐶1. Now, you have 

two other unknowns I mean unknown constants 𝑢0 and 𝐴 but you have other conditions as 

well 

2𝐵 𝑢0𝑥 = 𝐶2𝑥   

2𝐵 𝑢0𝑦 = 𝐶2𝑦  

2𝐵 𝑢0𝑧 = 𝐶2𝑧 

If you combine all, you can actually see that you can simply say that my 𝑢0
2 is nothing but  

𝑢0
2 = 𝑢0𝑥

2 + 𝑢0𝑦
2 + 𝑢0𝑧

2 =
𝐶2𝑥

2 + 𝐶2𝑦
2 + 𝐶2𝑧

2

4𝐶1
2

 

𝒖𝟎 = −
𝐶2𝑥 𝑖̂ + 𝐶2𝑦 𝑗̂ + 𝐶2𝑧 𝑧̂

2𝐶1
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Now, finally, you can write 

ln 𝐴 = 𝐶0 +  𝐵𝑢0
2 

= 𝐶0 − 𝐶1  
𝐶2𝑥

2 + 𝐶2𝑦
2 + 𝐶2𝑧

2

4𝐶1
2  

𝐴 = exp(𝐶0 −
𝐶2𝑥

2 + 𝐶2𝑦
2 + 𝐶2𝑧

2

4𝐶1
) 

So, finally, we could express all the constants 𝐵, 𝐴 and 𝒖𝟎 in terms of the 𝐶′𝑠. 

Now, we coming back to our previous thing where we wrote that  

ln 𝑓(𝒖) =  −𝐵(𝒖 − 𝒖𝟎)𝟐 + 𝑙𝑛 𝐴 

If we can write that let me just tell you one thing: in case you are just lost that here 𝑓
0
 is 

actually should be written over ln  𝑓(𝒖). So, every 𝑓 should be replaced by 𝑓
0
 because that is 

only true for 𝑓
0
 and 𝑓

0
 will be there and finally you can say that 

ln 𝑓
0

(𝒖) =  −𝐵(𝒖 − 𝒖𝟎)𝟐 + 𝑙𝑛 𝐴 

So, 

𝑓
0

= 𝐴 𝑒−𝐵(𝒖−𝒖𝟎)2
 

you can easily recognize this is the famous Maxwellian distribution Maxwellian distribution. 

So, finally, we could show that 𝑓
0
 has this form ok, but our assumption was that only the 

number, the kinetic energy and the three components of linear momentum are conserved in 

binary elastic collision and 𝑓
0
  is a function of 𝒖 only ok. So, here you can see that 𝑓

0
  

basically obeys  

𝑓
0

= 𝐴 𝑒−𝐵(𝒖−𝒖𝟎)2
 

 this type of distribution where A and B these two are constants and 𝒖𝟎 this is also a constant 

ok. 



So, this distribution looks very much like Maxwellian distribution, but the distribution which 

you have possibly encountered in the kinetic theory was not exactly looking like this because 

A and B had some specific value in terms of the given characteristic quantities of the system 

and also there was no 𝒖𝟎, right. Now in the next step we try to evaluate these two constants 

ok. 

Thank you. 


