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Hello and welcome to technically the last lecture of Introduction to Astrophysical Fluids. 

So, in this lecture, we will continue our discussion on astrophysical dynamos. And in 

previous lecture, we just introduced the concept of the necessity of dynamos and why 

basically we need to think about a dynamo type of mechanism. 

And we actually saw that there are two parts of the game, one is that to produce the 

magnetic field, some large scale magnetic field starting from some seed magnetic field 

which is caused by the statistical fluctuations of magnetic field in a plasma, and then once 

this is produced, the question is to sustain that. So that we can see the magnetic fields as 

they are in the common astrophysical systems. And we talked about three typical systems, 

one is for the star, one is for the Earth and of course the third one is for the spiral galaxies. 

We mentioned about the pulsar and magnetic field but this is which is quite strong and this 

is the story is even quite complicated. 

So, in this lecture, we will give you a very basic qualitative idea of how a proper dynamo 

action can be understood. But before that we will start by a very interesting theorem which 

rules out some possibility of having a dynamo action under certain simplistic condition. 
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So, this theorem is known as Cowling’s anti-dynamo theorem because Cowling was the 

first one who gave this theorem. And here we mainly investigate whether kinematic 

dynamo action can be obtained from the induction equation of an incompressible MHD 

fluid where the velocity is given. 

So, once again for recapitulation, kinematic dynamo means that we will try to solve the 

induction equation, and the velocity is given and magnetic field evolution equation is just 

a linear equation in 𝑩. And the magnetic field does not give any feedback to the velocity 

field through the Lorentz force. 

Now, in this situation if we again take for simplicity, a very particular situation where we 

imagine that we have a steady axisymmetric given velocity field. Now, the question is that 

whether this type of velocity field can sustain a steady magnetic field which is also 

axisymmetric about the same axis, whether this is a possibility or not. 
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So by Cowling’s anti-dynamo theorem one can actually show that this is not possible. 

Now, how to do that? Cowling’s original proof was not really very very rigorous, but there 

is a short but much more rigorous proof of it and we are now trying to a follow in this 

lecture, this proof. 

So, since both 𝑩 and 𝒗, that means the magnetic field both are solenoidal that means, they 

are of divergence 0 which is the case for incompressible turbulence, and if they are 

axisymmetric then both of them can be decomposed without losing any generality, that is 

very important, into a poloidal and a toroidal component of the form below.  

Now, any solenoidal field vector field can be decomposed in a poloidal and a toroidal 

component. But since they are axisymmetric then this component should have a specific 

form and that is coming from mathematical physics. One thing I have to tell you that what 

really is a poloidal field and a toroidal field? just imagine at torus, and there are two type 

of degrees of freedom on a torus.  

So, if you cut the torus then you will have a cylinder, then along this axis of the cylinder 

we will have one degrees of freedom and that is the so called toroidal direction. And if you 

just follow the lateral surface of the cylinder, this is another degrees of freedom. 

And then actually the axis will be exactly the axis of the cylinder. So, here in the first case 

the direction was the axis of the cylinder, but the axis was in the vertical direction. And in 



the second case, for the poloidal case, the axis is the axis of the toroid or the axis of the 

toroidal cylinder. 

So, this is roughly what poloidal field is which you can see in blue and what toroidal 

component is which you can see in green (see figure above). 
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Now, for our case, velocity and magnetic field can be written like  𝒗 = Ω𝑟�̂� + ∇ × (
𝜓

𝑟
�̂�).  

So, Ω which should be a constant and it is something like an angular speed, along �̂� is 

exactly the toroidal component (𝑣𝑟) and the curl part is the poloidal component (𝑣𝑃). 

And for 𝑩 we can also write 𝑩 = 𝐵�̂� + ∇ × (𝐴�̂�). Where 𝑨 is the so called vector 

potential. 

So, this type of writing is very general for an axisymmetric solenoidal vector. 

And now if we simply replace this expression for 𝑩 and also 𝒗 in the induction equation, 

now you see in this induction equation we have this the non-linear type of term which is 

no longer non-linear, here it is the linear term according to kinematic dynamo 

approximation. And you have another resistive term which comes with a plus sign of 

course. 



And then if you do that correctly you will see that for the vector potential part, you will 

have the evolution for vector potential as 

𝜕𝐴

𝜕𝑡
+

1

𝑟
(𝒗𝑃 ⋅ ∇)𝐴 = 𝜂 (∇2 −

1

𝑟2) 𝐴.  

This is a scalar equation. So, the evolution of 𝑨 is nothing but the evolution of the poloidal 

component of 𝑩. 

And then the toroidal component for 𝑩 has an evolution equation which is  

𝜕𝐵

𝜕𝑡
+ 𝑟(𝒗𝑃 ⋅ ∇)

𝐵

𝑟
= 𝜂 (∇2 −

1

𝑟2
) 𝐵 + 𝑟𝑩𝑃 ⋅ ∇Ω.  

 

Now, you see this Ω is no longer actually a constant, this is a scalar, . Now, you see in this 

point for 𝐴, the solution is simple, it has an advecting component, but mainly its fate will 

be decaying because it has a diffusive component. 

Now, what happens for the 𝐵? Now, 𝐵 has once again an advective part, one diffusive part 

which lets it to decay, but there is a source term. Now, that can be something of interest. 

But the problem is that the source term is proportional to 𝐵𝑃, and 𝐵𝑃 is nothing but 

proportional to 𝐴, now with time 𝐴 decays. So, 𝐵𝑃 will also decay, so 𝐵 will also decay. 

So, the source term of 𝐵 will stop in time and finally, 𝐵 will decay just due to the action 

of this diffusive term. 
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And that is why in this case, under this specific writing- that is very important, under the 

specific writing the poloidal component decays due to the absence of any source term. And 

the toroidal component evolution has a source term, but this depends only on the poloidal 

part. And so, it is stopping at one time because the poloidal part decays in time, so the 

source stops.  

And so, finally, the toroidal component also stops in time. So, that is exactly saying that 

we cannot have a self-sustaining kinematic dynamo where both the magnetic and the 

velocity field are steady and symmetric about the same axis. 
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Then what can be possible? Then the thing is that in order to have a sustaining dynamo 

action, we need non-axisymmetric steady velocity fields or non-steady axisymmetric 

velocity fields, that means any of the two conditions of steady and axisymmetric, if 

violated can give rise to a sustaining dynamo equation. 

So, they can sustain a steady axisymmetric magnetic field. But this needs rigorous 

mathematical treatment and there are researches on it, there are papers on it, you can search 

over internet and this is beyond the scope of this course. 

Here we will do another thing which is much simpler. So, in the scope of this course we 

will simply discuss a qualitative description or qualitatively the idea behind the Parker’s 

turbulent dynamo.  

Parker’s turbulent dynamo is very very important for this course because it has an 

enormous astrophysical importance. And actually, most of the astrophysical dynamos, 

except solar dynamo, in a very simplistic way can be understood using Parker’s turbulent 

dynamo. 

So, it is a highly useful theorem or highly useful model, but for that we again have to go 

to the traditional poloidal-toroidal decomposition of solenoidal vectors. So, in spherical 

coordinates, if we write any vector let us say the magnetic field, 𝑩 = 𝐵𝑟�̂� + 𝐵𝜃�̂� + 𝐵𝜙�̂�, 



then this azimuthal component can be identified exactly to be equal to the toroidal 

component. The rest is nothing but the poloidal component. 
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Now, here our main objective of the study is to produce a sustained poloidal field otherwise 

both poloidal and toroidal would decay. So, the poloidal part, if it is sustaining then as this 

has a source which is related to the poloidal part, it can also be sustained. 

So, of course this is roughly true, we cannot talk about this model here, but the roughly 

the idea is that if in any ways we can produce a sustained poloidal field, then actually 

poloidal and toroidal, both can sustain. Otherwise, if the poloidal field is somehow 

decaying then poloidal field would stop and the toroidal field would also decay in time. 

Of course, it could continue a bit longer, but finally, it would stop. 
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Now, Parker in the year 1955 in his seminal paper gave an excellent idea, a revolutionary 

idea on how the poloidal field can be generated. 
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And at this point you will see that how useful for you was to learn turbulence. Because 

Parker said that it is actually the turbulent motion of the plasma, inside the astrophysical 

body which causes all this sustained dynamo action. According to his theory, the turbulent 

convective motion of the plasma in an astrophysical body stretches out the toroidal fields.  



If the body has effective conductivity which is much larger than the viscous effects, so the 

frozen-in field theorem is approximately valid. And when frozen-in field theorem is valid 

then the plasma would drag the magnetic lines of force. And actually it is seen that finally, 

this can, in one hemisphere it can make the lines of force up a bit, and in another 

hemisphere it is like down (see figure above). 
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So, finally, starting from some toroidal direction we have something which is now nonzero 

in the poloidal direction as well. 
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Now, there are other part of the story as well, in most of the cases what happens that we 

are considering rotating frames of reference, and rotating frames of reference, it adds to 

the vorticity of the blob of a plasma even if the initial vorticity is 0, that we know from the 

effect of rotation in a rotating frame of reference, that for an incompressible fluid we do 

not need an initial vorticity.  

But the solid body rotation of the plasma itself gives the plasma a vorticity, and that 

vorticity will evolve in time. Now, once the vorticity is given then magnetic loops are 

formed. So, the story is very complicated. It is just schematically said here. And those 

magnetic loops get smoothed by the turbulent diffusion which you already have learned.  

So, when turbulent diffusion smoothens that, finally you will see you can have small 

magnetic loops and actually very interestingly it can be seen that all the magnetic loops in 

both the hemispheres are of the same sense. That is very very interesting. 

Now, this finally, leads to the poloidal field, a large scale sustaining poloidal field. Now, 

here we can see that the generation by turbulence actually sometimes we say helical 

turbulence because this is a turbulence with helical motion, so by helical turbulence, 

toroidal fields can give rise to poloidal field, and again if the system has a differential 

rotation as we can see in Sun, then again this poloidal field lines are stretched to give again 

toroidal fields by differential rotation. So, this is the whole story of the turbulent dynamo. 

And sometimes some people call this as the 𝛼𝜔-dynamo, this just for a vocabulary. 

Although, the proper analysis of 𝛼𝜔-dynamo is not discussed here, and it is much more 

analytically vigorous. So, that is something which I suggest you to check, in any of the 

books of reference or over internet, how can using mean field magnetohydrodynamics we 

can account for the possibility of a large scale magnetic field by turbulent dynamo 

proposed by Parker. 

Although, once again as I said, solar dynamo actually cannot really be described by this 

simple framework. So, this is something you have to understand just as a basic tool of 

understanding astrophysical dynamos. And now the question is of course, what about 

Earth’s magnetic field and what about Earth’s dynamo! 

So, once again Earth does not have any differential rotation as such. But my question to 

you is that, can turbulent dynamo of Parker, put some light on the Earth’s dynamo 



problem? Why this is sustaining? If yes, why? If not, why not? This is also a very good 

homework for you. 

 So, turbulent dynamo model which I described here qualitatively, is just the starting point 

of the dynamo theory in its regard, so the rigorous treatment is not done here, but just to 

tell you that already the very simplistic dynamo model includes so many pictures of 

rotation, frozen-in field theorem, turbulence, rotational effect, everything, including 

poloidal-toroidal decomposition.  

So, and of course, the situation becomes much more complicated if the fluid is 

compressible. So, a normal astrophysical fluid in a dilute interstellar medium is highly 

compressible. Then how to do that? Then you even cannot do very simply this poloidal- 

toroidal decomposition. 

So, this course was just to give you a very brief overview of what are the building bricks 

of astrophysical fluid dynamics. Of course, in the scope of this course I could have just 

told you may be less than 0.1 percent of the whole story. And now it is up to you, if you 

feel motivated. you go to the research papers, you go to several books, you go to the videos. 

Nowadays, you have billions of billions internet resources, so just search over that. And 

there is always a very big scope of doing theory and simulation. And observation is also 

very much popular already in astronomy, but theory and simulation there are so many 

scopes possible. I strongly suggest you, friendly but strongly suggest you to just go through 

several problems which are done in the last 25 or 30 years. 

So, thank you very very much for your kind cooperation throughout the course. I 

personally may not have been able all the time to express the best possible way what I 

wanted to say, but you see that once again this was just an introduction. If you simply feel 

motivated by this course to the problems of astronomy or astrophysics my work is done. I 

am more than happy. 

So, thank you once again. Thank you very much and best wishes. Best of luck for the 

examination. Thank you. Bye-bye. 


