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Hello and welcome to another lecture session of Introduction to Astrophysical Fluids. In this 

lecture, we will discuss a very interesting topic that is the Turbulence in MHD fluids. So, MHD 

or magnetohydrodynamics is the monofluid model of a plasma. So, it is true that in 

astrophysical or space physical fluids we always see clear signature of turbulent motion. 

Now, how to categorize this or how to classify this or actually how to perform a quantitative 

study of this type of turbulence is a great question and this question is not easy to answer. So, 

depending on our interests in different frameworks we would use different type of models. 

Sometimes we are happy with the hydrodynamic turbulence model, sometimes we have to take 

the plasma property into account. Sometimes just the monofluid model of MHD is sufficient, 

sometimes we have to go beyond. 

Then some sophisticated plasma fluid models and MHD is the simplest plasma fluid model, as 

you know that the plasma fluids can be also described in the framework of multi fluids. So, this 

type of turbulence can also be very much interesting but of course, given our interest okay. 

So, if certain questions are still not answered then even, we have to go beyond. So, we have to 

take the kinetic effects into account but here, just for this course or just for, I mean just to 

initiate you to the turbulence in plasma, we will simply give you a very introductory overview 

of MHD turbulence, also very qualitatively. I will just enter into some mathematical details 

whenever it is necessary but once again the mathematical rigor is not really followed over here. 
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So, just as I said that similar to ordinary hydrodynamic fluids, turbulence is also found in MHD 

fluids also. Actually, to be very honest in plasmas, one of the easiest ways to model this plasma 

turbulence is through the turbulence in MHD fluids because we know the MHD equations. 

So, how to understand the features of in MHD turbulence? we have to start from the basic 

equations of a MHD, again as we did in the case of hydrodynamic fluid, we will just consider 

an incompressible fluid. Because incompressible fluid turbulence is much easier to handle and 

much easier to see what is happening; the phenomenology is much easier or much more 

concrete to discuss okay. 

So, in this framework, we will only be constraining ourselves into the discussion of 

incompressible hydrodynamic and MHD fluids. Although for your information, many cases in 

astrophysics, we have to consider compressible MHD turbulence or compressible 

hydrodynamic turbulence. Now, just to start with the incompressible MHD equations,  

𝛁. 𝒗 = 0 , 𝛁. 𝒃 = 0                                                                            (1)  

 𝜕𝒗

𝜕𝑡
+ (𝒗. 𝛁)𝒗 =  −

𝛁𝑝

𝜌
+ (𝛁 × 𝒃 ) × 𝒃 + ν∇2𝒗                                                   (2) 

𝜕𝒃 

𝜕𝑡
= 𝛁 × (𝒗 × 𝒃 ) + 𝜂∇2𝒃                                                                    (3)  

 



 

 

The divergence of 𝒗 and divergence of 𝒃 both vanish. If you remember 𝒃 is nothing but the 

magnetic field normalized to a velocity well this is given by 

𝒃 =
𝑩

√𝜇0𝜌0

                                                                         (4) 

𝜌0 is the constant density of the incompressible fluid okay. As you know that for ideal MHD, 

of course we just need this but here we are talking about turbulence in MHD fluids so, we do 

not need an ideal MHD equation but this is the normal resistive MHD equation. Whenever we 

have done this, we say the corresponding MHD to be the resistive MHD. 
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So, these are the equations of resistive MHD (equation (1)-(3)). Now, if you remember the 

normal hydrodynamic Navier-Stokes equation then the non-linear term which was present was 

this one (𝒗. 𝛁)𝒗 and viscous term was this one 𝜈∇2𝒗. Now, in this case we have a lot of terms 

and certain terms are actually subjected to give the non-linearity. 

So, here the non-linearity can be of various types. So, in the force equation or the momentum 

evolution equation you have the non-linear terms like (𝒗. 𝛁)𝒗 and from here (𝛁 × 𝒃 ) × 𝒃 if 

you remember, that there will be a term of magnetic tension which should look like this (𝒃. 𝛁)𝒃 



and this is also non-linear. So, that one (𝒗. 𝛁)𝒗  is non-linear in 𝒗 and this was (𝒃. 𝛁)𝒃   is non-

linear in 𝒃. 

Then comes the induction equation (3), so induction equation; in true sense; it is linear in 𝒃 

only when 𝒗 has no feedback on 𝒃 but for magnetohydrodynamic turbulence, for an MHD 

plasma 𝒃 and 𝒗 they affect each other. So, we cannot say that this is simply a linear equation 

in 𝒃. So, actually (𝒗. 𝛁)𝒃 and (𝒃. 𝛁)𝒗 both are non-linear terms. 
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So, we have now all this type of non-linear terms and we know that in order to ascertain 

turbulent flow regime in case of an MHD fluid of course, both the force and the induction 

equation must be dominated by the non-linearity and this is the normal necessity that every 

equation should be dominated by the non-linearity. 

Now, for force equation such a regime is achieved by having the Reynolds number we with a 

very large value. So, Reynolds number is the ratio of the kinetic non-linear term to the kinetic 

dissipation term.  

𝑅𝑒 =
|(𝒗. 𝛁)𝒗|

|𝜈∇2𝒗|
≡

𝑣𝑙

𝜈
≫ 1                                                                (5)     

There is another term which is the magnetic tension ((𝒃. 𝛁)𝒃) by the kinetic dissipation term 

(𝜈∇2𝒗), that also should be large i.e., 
|(𝒃.𝛁)𝒃 |

|𝜈∇2𝒗|
≫ 1, but this term is not in general very much 



discussed only because if we say the fluid is very fast moving, then already this term 
|(𝒗.𝛁)𝒗|

|𝜈∇2𝒗|
 is 

having a large Reynolds number and this basically makes the whole the momentum evolution 

equation dominated by the non-linearity. So, we really do not need to have a large value for 

this 
|(𝒃.𝛁)𝒃 |

|𝜈∇2𝒗|
; however, if your velocity is not very large, then you can have to have a look on 

this but then the problem is that if your velocity is not large, but your magnetic field is large 

enough then the problem is that velocity is in the denominator, so when it is small and magnetic 

field is let us say large, then there will be a non-trivial competition to look at and in certain 

cases that can be also interesting. 
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But here for our current case we will simply be talking about the large value of Reynolds 

number to be the necessary condition for the dominance of non-linearity in the force equation.  

For induction equation, we have two types of non-linear terms as we have discussed, (𝒃. 𝛁)𝒗 

and (𝒗. 𝛁)𝒃 and the ratio of any of the two things to the corresponding magnetic diffusion or 

magnetic viscosity term; magnetic viscosity is a very unusual term but magnetic diffusion term 

or the resistive term gives us another quantity; both of them, can lead us to some quantity which 

should look like this one  

|(𝒃. 𝛁)𝒃|

|𝜼𝛁𝟐𝒃|
 𝑜𝑟

|(𝒗. 𝛁)𝒃|

|𝜼𝛁𝟐𝒃|
≡ 𝑅𝑒𝑀 =

𝑣𝑙

𝜂
                                                      (6) 

 



So, the numerator will exactly be the common Reynolds number but the dissipation or the 

viscosity coefficient will now be replaced by the magnetic diffusivity and this is known as 

magnetic Reynolds number. For the induction equation to be dominated by the non-linear 

effects the value of this magnetic Reynolds number should also be very greater than one, that 

means, it should have a very large value. 

Now, at this point I have to make one point that it is true that this Reynolds number and 

magnetic Reynolds number they are introduced in our course as they are looking like just the 

parameters for deciding whether a fluid flow is turbulent or not. But, in general Reynolds 

number or even magnetic Reynolds number if you understand correctly the association, you 

will see that these two things are actually very important to represent or to manifest another 

property of fluid flow that is the similarity property.  

Now just take the case of the normal Reynolds number, its expression is simply  
𝑣𝑙

𝜈
. Now, if the 

geometry of the flow field is same but the length scale is now twice and the velocity is also 

changed accordingly and 𝜈 is also changed accordingly. So, that finally, this ratio is simply 

having the same value as that of the previous value then one can simply say that the flows of 

the corresponding two system are actually similar in nature.  

So, in some sense just by smartly choosing the velocity and the coefficient of viscosity you can 

actually change the large-scale dimension of the flow field but then the basic properties of the 

flow field will not be different, for example, the transition from laminar to turbulent flow. 

Suppose, when the flow field is basically 10 times larger, then just by choosing the 

corresponding velocity and the coefficient of viscosity, you can simulate or just by doing the 

inverse thing; that means, you can choose the length scale to be 10 times smaller but again by 

smart choice of velocity and the coefficient of viscosity, you can again simulate the fluid flow 

with the same type of property. 
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Then in that system you can produce turbulence directly from laminar flow, so the message is 

that the use of Reynolds number is very much useful that you can actually simulate a very big 

large astrophysical system or a galactic system just by smartly choosing or keeping the 

Reynolds number value intact.  
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So now, coming to our main point that the MHD flow to be turbulent, the necessary condition 

is that the both the Reynolds number and the magnetic Reynolds number should be very greater 

than 1. Now, just like normal hydrodynamic fluid, energy cascade is also universally observed 

in MHD turbulence. Something which is already been studied in several research and also been 

founded in several observation or in experiments. Now, it is true that for hydrodynamic 

turbulence we had the phenomenology of Kolmogorov, so, Iroshnikov and Kraichnan they said 

in a different way which we will discuss here. So, to understand Iroshnikov and Kraichnan 

phenomenology, or IK phenomenology, let us recall the incompressible MHD equations in 

terms of Elsässer variables. 

Just remember when I talked or discussed about Elsässer variables, I said that expressing the 

incompressible MHD equations in terms of Elsässer variables, can actually be useful when we 

will study turbulence in MHD fluids and that is exactly the case which we are now discussing. 

So, to understand IK phenomenology, let us recall the incompressible MHD equations in terms 

of Elsässer variables. So, 

𝜕𝒛±

𝜕𝑡
=  −(𝒛∓. 𝛁)𝒛± − 𝛁𝑝𝑇 + 𝑑±Δ𝒛+ + 𝑑∓Δ𝒛−                                          (𝟕) 
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So, these two terms 𝑑±Δ𝒛+ 𝑎𝑛𝑑 𝑑∓Δ𝒛−are the dissipative terms. So, for instance we are not 

really interested in those dissipative terms because in turbulence we are mostly interested in 

the non-linear terms which are actually dominating than dissipating terms. 

So, here you again see, in case you have forgotten that the non-linear terms are of the type of 

(𝒛−. 𝛁)𝒛+or (𝒛+. 𝛁)𝒛−, but there are no such terms like (𝒛+. 𝛁)𝒛+or (𝒛−. 𝛁)𝒛−. So, they have 

a cross type of non-linear terms. So, it simply says that 𝒛+ is advected by 𝒛− and vice versa. 
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Now, we know that any small perturbation (first order perturbation); when we talked about the 

wave modes in MHD; propagates with the speed which is equal to the Alfvén speed and Alfvén 

speed is corresponding to the phase speed of the Alfvén mode, which is the only incompressible 

mode of an MHD fluid.  

So, in normal hydrodynamic fluid we do not have any wave mode for incompressible fluid, but 

for incompressible MHD we have one mode which is called the Alfvén mode. Now, in this 

case we have to actually consider; in order to proceed; the presence of a considerable mean 

magnetic field 𝒃𝟎. So, 𝒃𝟎 is the 𝑩𝟎 normalized by √(𝜇0𝜌0). Then the total magnetic field (𝒃) 

can be written as the mean magnetic field (𝒃𝟎) or the background magnetic field plus the 

fluctuation with the tilde sign (𝒃̃), i.e., 𝒃 =  𝒃𝟎 + 𝒃̃. 

Also consider, for velocity, the background velocity (𝒗𝟎) is 0, so the velocity field is nothing 

but the fluctuation 𝒗 = 𝒗̃, that we can always do just by sitting to a reference frame which is 

moving with the mean velocity of the system and that is possible because the fluid equations 

are Galilean invariant okay. 
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Now, if you just decompose every magnetic field as 𝒃 =  𝒃𝟎 + 𝒃̃, then actually you will be 

obtaining an equation which should look like equation 



𝜕𝒛̃±

𝜕𝑡
∓ (𝒃𝟎. 𝛁)𝒛̃± + (𝒛̃∓. 𝛁)𝒛̃± = −𝛁𝑝𝑇 + 𝑑±Δ𝒛̃+  + 𝑑∓Δ𝒛̃−                            (𝟖)    
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Now, there are two things, one thing is that what is the meaning of this term (𝒃𝟎. 𝛁)𝒛̃±? This 

term simply says that both the 𝒛̃+ and 𝒛̃−, they are advected with a speed which is equal to the 

Alfvén speed but in the opposite direction. So, 𝒛̃+  is advected in the negative direction. So, it 

actually moves with a 𝒃𝟎 velocity. So, 𝒃𝟎 is the equivalent to a mean magnetic field normalized 

to a velocity, but here in this case, this is also equal to the Alfvén speed. 

So, 𝒛̃+ basically propagates with velocity −𝒃𝟎 and 𝒛̃− propagates with a velocity 𝒃𝟎 . Then this 

one (𝒛̃∓. 𝛁)𝒛̃± simply says; so, (𝒃𝟎. 𝛁)𝒛̃± is not a non-linear thing because 𝒃𝟎 is uniform 

background magnetic field and one (𝒛̃∓. 𝛁)𝒛̃± gives us an account of the non-linear interaction 

of the perturbations; the perturbation in 𝒛̃+ is advected non-linearly by the perturbation of 𝒛̃− 

and vice versa. 

So, this non-linear interaction between 𝒛̃+ and 𝒛̃− is basically the reason for energy cascade in 

incompressible MHD turbulence and that is the essence of Iroshnikov and Kraichnan 

phenomenology which simply says that if you have two wave packets, 𝒛̃− and 𝒛̃+. So, 𝒛̃− will 

move to the positive direction with some velocity 𝑽𝑨 which is equivalent to our 𝒃𝟎 okay. 

So, I took this picture from my thesis where I use the Alfvén velocity to be equal to 𝑽𝑨 and 

𝒛̃+ would move with a velocity −𝑽𝑨, then just after interaction this perturbation 𝒛̃+ has now 



deformed to 𝒛̃+ + 𝜹𝒛̃+ and the same thing will be for 𝒛̃−. Now, 𝒛̃+ + 𝜹𝒛̃+ is still moving with 

a velocity −𝑽𝑨 and 𝒛̃− + 𝜹𝒛̃− is still moving with the velocity 𝑽𝑨 or maybe a slight change in 

velocity. 

But at least they are deformed and this is exactly equivalent to the fragmentation of eddies from 

one size to the other. Because after deformation, these (𝒛̃− + 𝜹𝒛̃−, 𝒛̃+ + 𝜹𝒛̃+) are of different 

size and as people have seen that the energy cascades both in incompressible MHD and 

incompressible HD in 3D, energy cascades from larger scales to smaller scales then we can say 

that after deformation both of them get shorter okay. 

So, according to Iroshnikov and Kraichnan phenomenology, energy is cascaded from larger to 

smaller length scales due to the non-linear interaction and subsequent deformation between 

two counter propagating Alfvén wave packets. So, 𝒛̃±, we just call them Alfvén wave packets 

because they are small perturbations moving with Alfvén speed. Now, Iroshnikov and 

Kraichnan, they considered a specific case of isotropic MHD turbulence with a considerable 

𝒃𝟎 to obtain some spectral prediction like Kolmogorov’s −5/3 prediction for MHD turbulence.  
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So, they said that, our system has a considerable mean magnetic field but the turbulence is 

isotropic which is not really practical as you know that a strong mean magnetic field always 

like makes the system axisymmetric; that means, the systems property along the mean magnetic 

field and in the plane perpendicular to the mean magnetic field are quite different in general. 

They also considered that for an adequate deformation of 𝒛̃±, a large number of collisions are 

required. So, this is the fundamental difference between the hydrodynamic turbulence and 

MHD turbulence.  

In hydrodynamic turbulence one eddy; so, the eddy got fragmented into two as I said, so the 

eddy gets elongated in one side and then in order to keep the incompressibility and it gets 

compressed in the perpendicular direction and then at one point it gets fragmented. But the 

fragmentation process is just once. So, this is a one soht process. 

On the other hand, here they considered that one collision between 𝒛̃− and 𝒛̃+is not sufficient 

for the energy cascade and for that they assumed that actually a large number of collisions is 

necessary and then what happened after some very heuristic arguments one can show that the 

characteristic time for the non-linear transfer is neither 
𝑙

𝑧̃
 (= 𝜏𝑙); which is the case for normal 

hydrodynamics, here it should be 
𝑙

𝑧̃± whatever nor 
𝑙

𝑏0
(= 𝜏𝐴𝑙)  because 𝒃𝟎 is another 

characteristic velocity in this system, but 
𝜏𝑙

2

𝜏𝐴𝑙
 . 
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So, if you call this 
𝑙

𝑧̃
  as 𝜏𝑙 and you call this 

𝑙

𝑏0
 as 𝜏𝐴𝑙, then the resultant transfer time from one 

scale to the other is actually 
𝜏𝑙

2

𝜏𝐴𝑙
. This simply leads to another spectral prediction which is for 

isotropic MHD turbulence is not −
5

3
  but 𝐸(𝑘) should then scale as 𝑘−

3

2. 
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However, IK phenomenology does not quite represent the reality as I just said as all the 

incompressible MHD flows become anisotropic or rather axisymmetric in the presence of a 

considerable mean magnetic field. 
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And in fact, one can argue that, in the presence of 𝒃𝟎, MHD turbulence follows Kolmogorov 

phenomenology in the plane perpendicular to the 𝒃𝟎. So, in the plane perpendicular to the 𝒃𝟎, 

one actually can expect a −
5

3
 spectrum rather than a −

3

2
  spectrum. 

Now, in solar wind a −
5

3
  spectrum is often found for magnetic energy power spectra; that is 

just for your information; and a minus −
3

2
  spectrum is observed for velocity power spectra but 

that can actually look like the velocity power spectra follows maybe the IK phenomenology, 

well, nothing to do with that they have some plausible explanation but it is true that this −
3

2
  

spectrum has nothing to do with IK phenomenology okay. Now, finally, what I am trying to 

emphasize that whatever your −
5

3
 or −

3

2
 , in practice when you do some simulation or some 

observational analysis most of the cases your spectral indices are in such a range that whether 

this is −
5

3
 or −

3

2
  is not really easy to understand. Actually, there are several variations, most 

of the cases you can see that it can be −1.55 sometimes it can be −1.6 and then the whole 

range of variation can lie within the range of errors. Finally, for the other scales which are 

lower or smaller than the normal MHD scales, people actually use much more sophisticated 

plasma fluid models or even kinetic models to describe or to explain the corresponding spectral 

slopes. 



And finally, last but not the least, in case of describing various type of spectra, power spectra, 

energy power spectra or kinetic energy power spectra, magnetic energy power spectra or the 

total energy power spectra, actually in the case of astrophysics and even for the solar wind, it 

is seen that sometimes the consideration of the compressibility that is the fluctuation of density 

is of prior importance as well. I personally interested in the in studying the compressible effects 

in space and astrophysical plasma turbulence okay.  

So, this was I mean somehow a very brief overview of turbulence in normal fluids and plasmas. 

Just to tell you once again that turbulence is something which is of potential importance in 

explaining several phenomena starting from the star formation. I have not really attacked that 

point because the role of turbulence in star formation; how it regulates the star formation is 

totally possible, if we try to if we introduce the compressible turbulence; but, in this framework 

of incompressible turbulence what I was just tried to convey that starting from solar wind 

plasma there are magnetospheric plasmas, all these plasmas give a clear signature of turbulence 

and according to our interest and the concerned length scale we try to study using different type 

of turbulent models, I mean fluid models okay. when we are interested once again in the length 

scales which are much larger than the ion inertial length scale then we try to feed this in the 

framework of MHD turbulence okay. 

Thank you very much. 


