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Lecture - 52
Richardson-Kolmogorov phenomenology of turbulence

Hello and welcome to another lecture session of Introduction to Astrophysical Fluids. In
this lecture we simply continue the discussion which we started in the previous lecture on
the turbulence in fluids. In the previous lecture we started by saying you, different elements

or piece of elements by which we can try to approach the problem of turbulence.

So, because of the non-linearity and very high irregularity, as you can easily understand
that a very easy analytical treatment for turbulence is not possible and then there came the
suggestion by Taylor in the year 1935 who said that, we should not be interested in the
one-point quantities rather we should be interested in the study of the two-point correlation

functions of velocity pressure for example and their evolution.

Then following that von Karman and Howarth the year 1938, they started that and they
obtained analytical relations for those correlation functions in the year 1938 for
homogeneous and isotropic turbulence. Now, I did not present the exact analytical results

by von Karman and Howarth because they are really a bit technically non-trivial.

So, just take it as an information that they did it and actually the next piece was done by
Kolmogorov in the year 1941 and that is the so called the first exact relation in turbulence.
So, that I will talk a bit about in this discussion. But in this discussion, we will start by
discussing the heuristic phenomenological approach to turbulence which was initiated by

Richardson in the year 1921.
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So, what I am just trying to say is that, historically the style of attacking the problem of
turbulence was not very much mathematically rigorous. Richardson who was an expert in
the department of weather, he was basically much more interested in modeling the
atmospherical turbulence and he observed that turbulent field always mostly consists of

eddies or vortex like structures of different sizes.

Then he proposed his picture of Richardson cascade and it was merged with different
hypothesis of Kolmogorov. So, they are called the Kolmogorov’s assumptions of universal
equilibrium turbulence or Kolmogorov’s universality hypothesis. I am not going into the
detail of all this hypothesis step by step and the Richardson cascade separately, but here
what I will try to tell you is the net picture of all these things.
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So, if you can compile all this Richardson cascade image along with the Kolmogorov
hypothesis, what you will get is the following. So, the turbulent velocity field is thought

to be composed of eddies of different sizes.
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The energy by the forcing term if you remember, this is f, the forcing term by which
energy is injected into the system, that can be of course some body force or some random
force. So, whether just by regular body force like gravity we can energize turbulence or

not, that is a matter of debate, I am not going into that, but simply what when I am writing



f, is simply some external energy source, I am not saying anything else okay. But this
external energy source should be such that the energy is fed only to the largest eddies of
the system; that means, the force function should be such that it is only working for very
large scales or the scales near the macroscopic scales okay. So, I mean, the energy is only
injected from exterior to the system at macroscopic scale and one of the way of saying this

is to the largest eddies okay.

Now, these largest eddies get fragmented subsequently to smaller eddies and this
fragmentation is mostly due to the incompressibility of the fluid. A very easy explanation
of this type of fragmentation can be easily understood by simply saying that let us say, you
have a vortex like this and of course as you are in a turbulent field, so, there will be some

discrepancy in the velocity at this point and this point (Refer Slide Time: 04:16).

Let us say at this point the velocity is greater and once again let us make it simpler, let us
say the component of velocity in this direction (let us say x direction), the component of
velocity at this point in this direction is larger than that of the velocity of this point. So,
what happens after sometime, this point will go farther and this point will not go farther

okay.

Let us say if you have this type of velocity direction so, what happens, after sometimes let
us say your vortex structure will be somehow distorted in one direction because the fluid

particle which was previously at this point will be now much farther.

Then the fluid particles at this point now the fluid particles at this point let us say they
come from here to here and the fluid particles from this point to that, they have come from

here to here. So, thereby they have some distortion.
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So, due to this discrepancy you will see that in time you will have in one direction an
elongation type of thing of the vortex and after sometimes you can have a section of the
vortex the structure that would try to tear almost in the middle and thereby making two

subsequent eddies and basically here incompressibility plays the role.

So, once again I am just drawing the picture, this particle has a greater velocity. So, it goes
there and it may go there; so now, the structure is more like this and then the structure with
time is more like this okay, then what happens? You have to easily understand that, since
this is incompressible and we are just tracing of one single vertex. So, we are just
concentrating on a given mass and we are just saying, I mean we are just following that
with time how does this evolve and so, for the given mass if the density is constant then
of course, it is very necessary that the effective volume should also be constant otherwise

this is not possible right.

So, of course, the volume is conserved almost, I mean the volume conservation is still
guaranteed because there is an elongation in one direction and a compression in the
perpendicular direction right. So, afterwards when the elongation is too much, then in order
to conserve the volume, the lateral dimension should be so small that it can actually tear
at this point and then you can see that you have two smaller eddies which are roughly the

half of the size of the bigger one.



So, that is simply the story of the fragmentation of the eddies. Now, when the larger eddies
get fragmented into the smaller eddies, then what happens is that the energy was first fed
to the largest eddies and they are become smaller eddies subsequently so, the energy is
now effectively in the smaller eddies. So, it is practically just by saying that the energy is
cascading from the larger to the smaller eddies or if we just say that the size of the eddy is
somehow equivalent to a length scale, then we can say that the energy is cascading from
larger to subsequent smaller length scales and this is known as the cascade of energy in

turbulence.

Of course, you understand that if the fluid is not incompressible then this type of
fragmentation is not guaranteed and then this type of cascade is also not very easy to
imagine, that is one of the main problems in astrophysical turbulence where most of the

fluids are very much compressible.
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Now the next point is that, finally, when the vortex size is so small; so, there is a
fragmentation process from the larger to the subsequent smaller eddies and then this
fragmentation reaches to such an extent that the vortex size is very small; and it

corresponds to the Reynolds number ~ 1.

So, all these things are just our phenomenological assumptions. This is the
phenomenological picture and there is no hard and first proof for that, we are just saying

that we believe that the turbulent system should behave like that, so energy can cascade



up to the extent where the Reynolds number is of the order of 1 and we call this

corresponding length scale to be Kolmogorov scale.
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So, that corresponds to Kolmogorov scale, then we can actually say that starting from this
scale, I mean this vortex of this size with Kolmogorov scale, the energy is dissipated by
the effect of viscosity. So, no more fragmentation and cascade of energy takes place. Now
between the forcing scale; so, forcing scale we can always say that this is the macroscopic
scale, we can simply designate this by the length capital L and the velocity capital by V;
and the Kolmogorov scale; which is the dissipation scale which we can designate by [,
and vy,; energy simply cascades from one scale to the subsequent smaller scale with a

constant flux rate. So, this is a simply a very important assumption of the whole theory.

So, during the cascade process, the cascading is taking place in such a way that the energy
flux rate is not depending on the scale chosen. So, this is basically constant throughout the

scales.
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And so, this process of cascading is simply independent of both the large-scale geometry

and the small-scale dissipation mechanism. Because the cascade process is only

characterized by a constant flux rate and this constant flux rate does not really need any

detailing of the large-scale geometry and the small scale forcing and so, that’s why, this

process of cascade simply gives us a concept of universality or universal behavior of

turbulence.
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Because, roughly it is saying that the energy is injected at this scale so, this is the largest
scale and or called the forcing scalar or integral scale and this is the Kolmogorov scale

where energy dissipation is taking place.

This (Refer Slide Time: 15:17) picture is for the communication purpose, it is drawn like
that, but between these two simply does not mean that just starting from this one and

reaching to the Kolmogorov scale.

When we are talking about simply the cascading with a scale independent flux rate, then
we simply talk about a range of scales which are not only in between these two scales but
also very far from both the scales. So, in a sense this should be like here okay, maybe much
more practical is like this. This could be the range of scales in which the proper cascading

takes place with the scale independent energy rate okay.

So, these things are very subtle and this range is also far from both this scale and so this
range is not really affected by any of the two and therefore this range is known as the

inertial range and is universal for any turbulent system.

Because, let us say your turbulence is in a spherical jar or in a cubicle box, for both this is
the same or you have a turbulence in tap water or your turbulence is in a salt water, so, it
is the same. Let us say you have turbulence in glycerin or in oil, well the viscosity is
different, but this cascading process is universal because this does not also care about the

nature of the viscosity.

So, this is known as inertial range and you can simply see that the bigger eddies or the
larger eddies, they are fragmented into subsequent smaller eddies to such an extent that
the eddies reach to the scale of smallest eddies and this is the so-called Kolmogorov scale
or the energy dissipation scale. Now, at this point, [ mean we should remember that
although we are saying that inertial range is very far from both this range, when we will
do some phenomenological treatment, we will actually say that the energy is injected to
the system, let us say at some rate, the energy injection rate to the system is actually equal
to the energy cascade rate and that is actually equal to the viscous dissipation rate and that
is the necessity of having a stationary regime in turbulence, that was one of the

fundamental hypothesis of Kolmogorov.
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Now, we can do something here at this point we will do something which is heuristic; that
means, it does not have any proper analytical rigorous mathematical background, but we
will do some simplistic estimate just by using the order analysis and of course, [ mean it
is a very crude treatment. So, maybe you can have some complain about the mathematical
regard of this part, but well this is how that historically or traditionally the turbulence field

was studied at the very outset.

So, we have postulated several points and based on those points we will now trying to

construct some quantitative results. So, the first one according to our definition, this is
l : .
dTvd, the Reynolds number at the Kolmogorov scale which should be of the order of unity.

So,
lgvg ~v (4)

So, that is the Reynolds number definition in case you have forgotten. So, for our case we
simply say that coefficient of viscosity is not a function of length scale, this is roughly

true. So, if this is true then [; times v, will be of the order of v. Once again we know that
the macroscopic Reynolds number which is % should be very greater than 1, so LV >>

V.



Now, energy cascade rate €, that is something which should be dimensionally this is the

thing which is actually according to our assumption should be scale independent.
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And dimensionally it is nothing, but the energy the density of energy per unit time. So, for
incompressible turbulence case; traditionally we just say that there is density of course; so,
p is 1 there and p is constant. So, we are just normalizing everything at which is p is equal

to 1 ok and so, according to this normalization, € is

2 3
€~b~ll (B)

T] l

Now, this 7; is the time required effectively for the fragmentation of an eddies of length
scale [ right and this is again roughly is nothing but vi . So, if that is the only possible time
l

scale.
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3
So, then we can simply replace this 7; byvi and you have € is of the order of “L ok. Now,
l

we have to have stationarity; that means, that if you just write the Navier-Stokes equation,

ov

E+v Vv= -Vp+vVv+f

and you write the energy equation; kinetic energy evolution equation from Navier-Stokes
equation.
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In case you are not clear at this point. Let us say we take the dot product of by velocity to

both sides and then you simply do the evolution equation for kinetic energy,

ov
v. [E-I_ v.Vv= —Vp+vWov+f

‘ . ‘ , . a(v?
you will see that when if you just assume a stationary state then this term —g; )=
19 1 .

—— [ ~v2dt will be zero.

votY 2
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So, there will be actually a balance between non-linear part, dissipation dissipative part
and the forcing part. This part v.V p actually does not play any role because if you just
understand that v.V p = V. (vp). Since for incompressible case v is divergence less. So,
this will be simply V. (vp) okay. And this one. So, this V. (vp) one will be something of

nature divergence.
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So, by Gauss’s divergence theorem you can forget. So, there will be a balancing between
this non-linear term and this dissipation term and this forcing term. So, at very large scale
the forcing term remains i.e., the part which contributes, in the intermediate this part v.V v

contributes and in the very small scale this one v V2 v contributes okay.

So, now, the thing is that of course, the forcing is specifically given at the very large scale.

So, once this is injected you have this. So, in the very in the intermediate scale this part f



is balanced by this one v. V v and in the small scale simply this part f is balanced by this

one v Vv okay.

So, when this part f is balanced by this part v. V v, then we can simply say that the forcing
i.e., the energy injection rate should be exactly equal to the energy flux rate by the non-
linear cascade. Once again in the stationary regime of course, then you can say that the
energy dissipated by this dissipation term v V2v will be exactly equal to the energy injected

f. So, all these three actually should have; if you think should have; the same flux rate.

So, the energy injection flux rate should be equal to the cascade energy flux rate and it
should be equal to the energy dissipation rate okay or the flux or the dissipated a rate of

the dissipated energy flux okay.

3
So, for the stationarity we first have this cascade rate; that means, the le which is the €,

3
should be almost of the same to =2 that is the energy dissipation rate, once again ener
Iy gy p g gy

flux rate, I mean the density of energy per unit time. i.e.,
E~—F~ — ©)
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So, if you just see from (B), since € is not depending on , so, So, then you can say that v}

cube will be of the same order of [. i.e., v{ « L.
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Again using (A) and (C),

So, where you just get rid of v4 and you have € will be v3 by [} and then you can simply

3\ 1/4
write l; will be of the order of (v?) . So, that is a very important piece of result and

again vy which is of course, is also proportional to lcll/ 3. So, vg4 can all actually be equal to
e\ 1/4
V(i)

So, above can be easily explain because from (A), you have v; ~ ll . So, ll gives you
d d

3\ 1/4
v (v?) . So, just you can check that

1
vy ~ (ev)%

So, that is the estimation of the dissipative length scale [; or the Kolmogorov scale and
the corresponding velocity v, in terms of the viscosity and the energy flux rate okay. Now

which is also equal to the viscous rate.
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Now, if we just define the macroscopic Reynolds number to be Re ~ o and for stationarity

. S v3
then we again need the energy injection rate a should be equal to the energy cascade rate

3 3
sz and should be equal to the energy dissipation rate 1;—d , we simply can say that zi will be
d d

3 3 3
of the same order as (UL) that you can simply compare these two, VT and j—d , you can
d d
have this one ok. i.e.,
v v vl (L ) < 4 )3
E~—n~ —~ — = (=~ ([—
L l ld ld Vg

And finally,

L V3/e VP LNE VLG
=)~ )

_N—N__ﬁ

L3 ;
V4 /51/4 V2

%is nothing but the macroscopic Reynolds number Re. So, liwill be of the order of
d

macroscopic Reynolds to the power 3 /4 and the corresponding ratio for the velocities; that

means, the macroscopic to dissipative length scale velocity or rather forcing scale velocity
3

to Kolmogorov scale velocity will be simply one third of this thing (%~ )Z which will be

1

Res, So
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So, now just let us take one simple example, very typical example for laboratory
experiment, we have seen that for water; for example, for tap water; the turbulent takes
place at a macroscopic Reynolds number (Re) ~ 10* ; that means, that the macroscopic

scale to the microscopic scale is of the order of 103. So,

L vV
—~103& <—>~10
lg Vg

So, we can say that the forcing length scale is 1000 times greater than the Kolmogorov
length scale but the velocity of the forcing scale is just 10 times greater than the dissipative

velocity scale okay.

Now, a large macroscopic Reynolds number therefore, corresponds to a considerable

separation between the forcing and the viscous scales. So, if Reynolds number is larger

then, zi will be larger and; that means, that the L to [; distance will be larger. So, the
d

separation between the forcing and the viscous scales will be larger and that creates a larger

inertial range.

Finally, we have to remember that all the above arguments are heuristic and cannot be

derived, not known till date at least from the first principle directly.
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However, I mean how can we check that? So, we have made some hypothesis and
depending on that hypothesis we have given at least some estimations quantitative
estimations and we can simply verify those in natural systems and if that works then we
are happy. That is actually systematically done in terms of the quantity which is energy

spectra which is E' (k) as a function of k.

So, because I mean practically speaking that you can measure my macroscopic velocity
microscopic length scale, but how can you measure mesoscopic, I mean the between the
microscopic and macroscopic; the forcing and the dissipative scale velocities; and length
scales? This is not very easy. So, therefore, what we will do in general, we calculate
something which is much more traditional to calculate is the energy power spectra E (k).

what that is?
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So, in order to understand that we have to go to this point that since Navier-Stokes equation
is non-linear in nature and as the turbulent turbulence motion is non-linear in nature then
we cannot neglect the non-linear term okay and if you do the Fourier transform in Navier-
Stokes equation then simply you can understand that the non-linear terms in Navier-Stokes

equation will involve more than one wave modes.

So, if the term is linear then if you just do the Fourier transform of the term then one
quantity at some space point x will correspond to some other wave mode k in Fourier
space, but if the quantity is non-linear; if the term is non-linear; then the any term
corresponding to a single point in real space corresponds to more than one wave modes.
Therefore, we talk about the triads. So, if you are interested you can see any standard text

books of turbulence.

So, the non-linear term of Navier-Stokes equation involves three wave modes p, q and k
such that p + q = k. So, there will be a triadic relationship, I mean they should follow the
rule of triangle addition. So, we see that one-point description in real space is not one point

description in Fourier space.
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So, one can say okay, now we can actually be interested in the one-point description in the
Fourier space right, one can be interested to know how the properties of turbulence changes
as a function of wave mode k in a Fourier space; that means, a single wave mode okay.
So, I have to write that a single of single wave mode k in Fourier space and that means, it
cannot be given by a single point description in direct space. So, then we will actually have
to think of two-point correlation function like this and this is exactly supported by Taylor’s

work of 1935 which says that we have to be interested in two-point correlation functions.

Because he also thought that in order to know the main mystery of turbulence, rather to be
localized in direct space, we have to be localized in spectral space and therefore, we have
to consider more than one point correlation functions because if you are now considering
the Fourier transform of the correlation functions, that will give you something

corresponding to only one single wave mode.

So, but what is this E (k)? So, E (k) is the energy density in spectral space or you can say

incompressible case when p is simply normalized to unity then,
1 [ee]
—(v?) = f E(k)dk
2 0

So, I am just talking about homogenous and isotropic turbulence that is why we are simply

taking k as scalar. So, this is the definition of E (k) okay.
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Now we try to check the k dependence of E (k). So, before that, let me just designate k; ~

%, which is the wave number corresponding to the largest eddies; that means, that is the
smallest possible wave number in our system and k; ~ zl’ that is the wave number for the
d

smallest eddies, that is the largest possible wave number for our system. So, according to

Kolmogorov’s assumption E (k) can be expressed only in terms of € and k.
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So, that actually comes also from his universality hypothesis, but here you just learn this
as information. So, the definition, we have %(vz) = fooo E(k)dk . Sov? ~ E(k)k . So,

E (k) should have a dimension of L3T 2 i.e.,
1 00]
S (v?) = f E()dk = v* ~ E()k = [E()] = [FT~
0
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If you simply follow normal dimensional analysis and you say that E (k) is only a function

()}

k)

log

of € and k, then just by doing dimensional analysis you will say that the only possibility is

2 5
that E (k) should be scale as €3k 3. € is something which is independent of scale and so,

it is also independent of k and then finally, Kolmogorov’s also said that there should be a
constant of proportionality which nearly makes them equal and this is known as the

constant of Kolmogorov.
2 5 2 5
E(k) ~ €3k 3 = Ce3k™3

Now, this constant of Kolmogorov can be different from different turbulent system. So,

5
here you see that the E (k) basically varies as k3 for a given turbulent system and this is
nothing, but the Kolmogorov’s —g rd law. So, what you have to do? So, if you now

understand what E (k) is, E(k) is nothing, but the Fourier transform of the two-point

correlation functions.



So, you have to calculate the two-point correlation functions for a system and you have to
take the Fourier transform then we will get E (k) and then you just plot logE (k) versus
log (k) and you will find the slope of the graph; you will see that this is the injection, this
is the dissipation between these two this is the cascade part where you have a power log

which varies as k~3/3.
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Now, you see that this relation is so universally true that it can be actually valid for most
of the system. I have taken this picture from one of the books and you can see that this is
consisting of different systems, one is sea water; one is like the normal tap water; one is
the atmosphere; so, atmosphere can be considered to be incompressible. Actually, that is

why Richardson’s original image was so good that it worked for atmosphere okay.

So, here you see that although their dissipation the point where they start dissipating are

different, but they all of them have some common range with this type of power law and

actually the fabulous thing is that when you calculate the slope, you will get — g This

5 . . . .
— 3 spectrum is a signature of universality of turbulence.
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So, now in a different system for example, if the fluid is a plasma or something then this
type of universality is also existing or not that is exactly what scientists always try to find
out okay. So, we have seen that we are finally, using some very crude phenomenological
considerations, we have given some at least a functional dependence of E (k) with the wave

number, but now coming back to the called the analytics, can we relate at least this?

So, up to this point I said that we cannot do anything. So, for example, when I mean up to
this point, we said that all these above arguments are heuristic and it is not possible to
derive them from first principle, but at least when using those things finally, we arrived at

this result which is quite fantastic.

Now, the question is can we relate this to something much more analytically sound? So,
for that we have to see the development of analytical approaches after that. So, as I said
that after Taylor’s suggestion in 19353 von Karman and Howarth, they derived in 1938

the evolution equation for the two-point velocity correlation function.

That was also an exact relation, but it was not simply, I mean a very good constraint just

using two-point correlation function or something like that to the energy correlation, there

]
was always a % of the correlators R;; okay.



Now, Kolmogorov derived a law for stationary and homogeneous and isotropic turbulence;
. .0 . . oy
stationary means this 5; term was 0; the third order structure functions of the longitudinal

velocities,
4
3\ - __
(6771”) = 5 el
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What is the third order structure function? If you take the increments of two points, that

means, the velocity increments §v; that is nothing but of course
vy =v(x+Lt) —v(xt)

So, if you take this v, and then you take the its parallel component; that means, if you
take some length scale or some distance then you take the projection of this vector

6v; along this direction then you have vy, parallel and then you take the cube of this.

Once you take this 612;3”, you can calculate this for all the couple of points which are

separated from each other by a length [ and then you take the average. Here you are simply
doing the space average for practical purpose although it should be ensemble average in

general and then you just plot this with the modulus of I vector, which is [ and you will

see that the slope will be — % €. So, here from here you are actually also calculating € and

if you simply see that this one 617?”, now this one what is this?



(Refer Slide Time: 46:36)

e evolution Ulmdla-n Fredhe two-p oint-
ve,hrdl—q Covrelation Pametion:
W
* Kplmoaovov (1241) dexived, for s'ra{-famrr?,

omd 'RATM&MWMA, isohf]n‘c turbulence an
ovack lowr wf/\i(,b\sa»&s

8 =
v B—— Sv=
@ {8V, =-Lel lﬂ‘(ﬁé‘)
¢ =)

% P thu above equadion , ene wan also
deme KB law.

If you say that this § v?” / 1 is nothing but roughly v}, the turbulent velocity cube divided
3
by [ ok then that is proportional to the order of epsilon i.e., le ~ €. So, that is exactly what

we found earlier.

(Refer Slide Time: 47:06)

TRe ewolubion eqnadion foedhe two—point
Vehrdi—q Covrelaton Pametion:
\ 4
* Kﬂ'rwoaowv (1a41) dexived, for S'rt!{'fd'r\wr'?,
omd ‘Rowwavrwm, iﬁo&n“:(c, turbulence an
ovack (o wivich saxs

-

h
= low of 3 :-_[L 5§V
S Vs R

% Frm ﬁuabov#—&g%&n,m wnalso ~ VR
denve K_qz‘ lor . W%av @

So, here we can see that this equation (6 v?‘”) = — g €l , which is known as the fourth fifth

J

law of Kolmogorov, the previous one was the minus five-third law and this is called the

four-fifth law of Kolmogorov or the exact relation of turbulence. We saw that this equation



5
also gives the indication that we can derive k 3 law from this because once you have this

3
sz is something scale independent then actually you can simply write, I can do that.
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If you have sz ~ €, which is scale independent then you that v? ~ E(k)k . So, you can

(E(K)k)®
k-1 -

simply say that €. Now I leave it to you to simplify and you will see that you

2 5
will retrieve E (k) ~ €3k ™3 .

So, you see that this result k_g result can actually also be obtained from exact relation as
well okay. So, in the next lecture, I will discuss the Reynolds decomposition and then I
will shortly introduce turbulent viscosity, because that is something very interesting for
accretion disks and then I will talk very qualitatively a little bit of plasma turbulence of
course, and finally, I will sum up by saying something qualitative for the turbulence in
astrophysical contexts okay. But of course, not in this week that will be the program for

the first lecture of next week okay.

Thank you very much.



