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Hello and welcome to another session of Introduction to Astrophysical Fluids. In this lecture, 

we will discuss a new topic which is turbulence. Previously, we have discussed several 

properties of neutral fluids and plasma. In plasma, we have discussed different properties: the 

definitions of different types of plasma, how to describe a plasma from kinetic theory.  

Very briefly of course we have discussed how from kinetic theory we can have a transition to 

fluid theory or continuum. Then, we have seen that there are multi-fluid pictures as well as the 

mono-fluid pictures and this depends on which length scale and which time scale, I am 

interested in. 

Now after that, we have also discussed so the mono-fluid model as you know is the magneto 

hydrodynamics and then we of course, discussed the various properties of magneto 

hydrodynamics and then, we have discussed a little bit about their application or importance in 

the framework of space and astrophysics. Now, in this lecture it will discuss a different topic: 

the turbulence.  

So, mostly, I will discuss in this session and also in the next lecture, the general properties of 

turbulence for normal incompressible fluids and only then, I will just discuss very briefly about 

the turbulence in plasmas and also their importance in astrophysical context or I mean in space 

physics context. For example, turbulence in solar wind is a very hot topic of research. 
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So, as you can easily understand here that previously when we discussed the stability and the 

instabilities of the fluid, then we said that we start from some arbitrary steady state and then, 

depending on whether the steady state is stable or unstable, the it responds to an external weak 

perturbation.  

So, if the steady state is stable in nature, then it responds in terms of the linear wave mode so 

the system tries to get back its original configuration or if the original steady state is unstable, 

then basically the small perturbation which is applied actually grows in time and after a certain 

extent, it is no longer a small perturbation and you can we cannot any longer analyze this using 

linear techniques. 

The we are talked about general instabilities. The onset is of course, the linear instability; that 

means, this system is treated under linearization but of course, when the perturbations are 

growing large and larger, then we have to take either non-linear techniques into account or we 

just have to say that okay, we cannot do analytical treatment and then, we can do some 

numerical treatment for those type of problems. 
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Now, it is true that in such cases since the perturbation becomes very large or important, then 

actually the fluid motion becomes practically unpredictable. Now, what is the meaning of that? 

That means, let us say you have two infinite similarly closed fluid particles and now with time, 

they are now diverge hugely both in space and time okay. 

So, that is something very important, the irregularity is observed in both space and time. 
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So, such a flow regime, where the system is undergoing or the flow is undergoing some very 

non equilibrium state of motion with irregularities in both space and time; we sometimes say 

disordered motion in space and time; is called turbulence ok.  

(Refer Slide Time: 05:42) 

 

And of course, you can easily understand that if for example, you have a flow field like that 

and the velocity at this point is 𝒗 and then, the velocity at this point, I mean tracking is not very 

easy. For example, the fluid is really moving totally erratically; just by knowing the velocity at 

this point and this point, you cannot really predict the nature of the flow in some subsequent 

instant because after a small-time interval this particle let us say here, this particle let us say 

here, this particle let us say here; so, three particles are totally in different places (Refer Slide 

Time: 06.21). When I am talking about particle, I am just simply talking about fluid particles 

in Lagrangian sense. So, in a in practical sense, you cannot picturize the fluid motion. 
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For example, if you have a laminar type of flow, then you know that layers are like this. So, 

just knowing this type of profile, the velocity profile here, you can have a strong idea or clear 

idea of the velocity profile here right. But here in turbulence, this is not possible.  

So, that is why it is not very much practically important to know the one-point variables at any 

point of time. Of course, you can know that as an information; but to know the global picture, 

whether globally the system gives some vortex like structure or the system is moving in some 

type of two-dimensional sheet type of thing; is impossible to extract from such type of 



information. So, what happens that the total system is a chaotic motion; of course, the formal 

chaos is a different thing, but I mean just roughly speaking the turbulence motion is nothing 

but a chaotic motion, a totally disordered motion; so, we need the statistical study. 

(Refer Slide Time: 08:01) 

 

So, what we can do instead of just determining the velocity or the pressure at one-point or 

another point, is we can take the average of this such type of points and if you prepare an 

ensemble with large number of members, that means, you prepare a large number of imaginary 

systems ok, with identical fluid flow and then, you just specify one time point and one space 

point and you take that point in space and time from each member of the ensemble and you do 

the ensemble average. If you can do that, then this average can have some meaning ok. Why? 

Because any anything which is randomly moving, we know that in statistics, this is much easier 

to capture the behavior because if we know its distribution actually should follow something 

very well-known thing either gaussian or I mean well, it is a perfectly random thing, then it 

should be a Gaussian type of distribution or it can be something modified Gaussian or 

something nearly more complicated like that; but at least we have some behavior of the 

distribution. That is what I am trying to say. 
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That is exactly the same type of picture what we have when we are talking about kinetic theory 

for example right. We have a large number of gas molecules which are moving here and there 

and so, we are not interested in the behavior of a single particle at one-point because this is a 

total mess. Then, our interest is to know that in phase space for a given 𝒙 and 𝒑, how many 

particles should be there ok. So, just analogical to that philosophy, here we are simply saying 

that here we are not interested in this just because once again, the movement the fluid particle 

is totally a mess ok. 

It is totally unpredictable and that is why we are not interested in the individual values of the 

velocity, pressure like this at every space and time; but we are more interested in that average 

values and to know that, if they can give us some meaningful information ok. 
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Since perturbations are the source of turbulence, then we can actually think of decomposing 

every fluid field (𝒗) as a mean field (⟨𝒗⟩) plus the perturbation part or the fluctuation 

fluctuating part (𝒗̃) and sometimes, we call this as the turbulent velocity or turbulent field 

simply. I mean turbulent field is a general thing for the fluctuation part. So, 

𝒗 =  ⟨𝒗⟩ + 𝒗̃                                          (1) 

(Refer Slide Time: 11:24) 

  



This type of decomposition was done by Reynolds and that is why this is known as Reynold’s 

decomposition okay. So, what you have to do that you have to decompose them into two parts; 

one is the mean velocity that is the ensemble average ⟨𝒗⟩ once again and this is the fluctuation 

𝒗̃; that means the instantaneous value of velocity at every point and space and time minus the 

ensemble average value ok.  

So, we just call this ensemble average value ⟨𝒗⟩ as the mean velocity. Now, here we are taking 

ensemble average that is true but I mean well theoretically, it is much more proper to talk in 

terms of ensemble average and it is much easier to take space average or time average. 

So, ensemble can be made in numerical simulations; but in practice, you have only one system 

right. So, you cannot; for example, if I tell you to study the behavior of the of turbulence in a 

river, then, you need to create thousand rivers at the same time and this is not possible right; 

So, this is just something which we talk for theoretical correctness. 

But in general, what we do that we assume that our system is either homogeneous enough so 

that the ensemble average can be replaced by spatial averages or our system is stationary so 

that the ensemble averages can be replaced by time averages. Now, if our system is ergodic; 

what ergodic is? It is a tricky definition; but at least here, just you have to simply know that 

this is a rough definition that if the phase space density of the ensemble points follows the 

Liouville’s theorem or something like Liouville’s theorem; let me just not going into this 

pinturas box; then we can say that the system is ergodic and all these three averages are 

practically equivalent. 

So, although, we are talking in terms of ensemble average, you remember that for a practical 

purpose; for example, if you even if you do a new numerical simulation what would you do to 

take averages? Would you really start every time run the simulation 1000 times? You do not 

do that. If you take 1000 snapshots and take the time average or you take just for a box at a 

time instant, the space average, that is practically what you would do okay. So, most of the 

time it works. It works means it gives us something which we can expect from our intuition or 

from the first principle or from holistic logics okay. Now, that simply says that the turbulent 

systems, although they are very disordered randomly moving, ergodicity can be very well 

applicable for those systems ok. 
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Now, here you can see that; so, these are all about these three types of averages and once again 

for ergodic system, these three averages are equivalent. So, for our case, what we will do is 

simply Reynolds decompose and we will according to our convenience from time to time, we 

will take space average or time average ok, which will replace the ensemble average.  

So, then the fluctuation part. Now, the fluctuation part actually by definition is of mean zero 

and that is, the definition of fluctuation. If you take the average in both sides of equation (1). 

⟨𝒗⟩ =  ⟨⟨𝒗⟩⟩ + ⟨𝒗̃⟩ =  ⟨𝒗⟩ +  ⟨𝒗̃⟩ ⇒  ⟨𝒗̃⟩ = 0   

 So, the average of the average is nothing but itself. you see that the average of 𝒗̃  is zero. 

So, the one-point statistics is also not much useful for the velocity because this is simply zero. 

Now not in this lecture, but in the later, I mean after 1 or 2 lectures, we will properly address 

this Reynolds decomposition method and thereby, introducing some important things of 

turbulence okay.  

But here just for your information, I would like to mention that just by doing Reynold’s 

decomposition, the take-home message is that one-point statistics for this tilde is not just 

interesting okay.  
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Now, you can of course, do ⟨𝒗̃𝟐⟩ and that can give you something okay. Now, at this point, of 

course, this is possible. So, one-point statistics of first order is not possible. So, there is another 

possibility. 
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So, maybe higher order moments can be interesting ok. 
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The total thoughts about this turbulence were changed after Taylor, who suggested in a seminal 

paper in 1935 that actually for studying the turbulence in incompressible fluid instead of one-

point velocity functions one needs to study two-point velocity correlation function ⟨𝒗̃(𝒙, 𝑡) ⊗

 𝒗̃(𝒙 + 𝒓, 𝑡)⟩ and its evolution.  

So, that means, the fluctuating velocity at one-point for a given time instant at one-point in 

space contracted with another point in space and its evolution. So, that is the correct thing to 

study. How actually Taylor thought that, I will come later into that ok. 

So, this type of quantity ⟨𝒗̃(𝒙, 𝑡) ⊗  𝒗̃(𝒙 + 𝒓, 𝑡)⟩ has to satisfy two properties; one is that it 

should go to 0, when 𝒓 is very very large; that means, two very distance or distant points is 

really impossible to be correlated and another thing is when 𝒓 is 0, then this is simply the 

exactly what I just said that the higher order moment for 𝒗̃ i.e., ⟨𝒗̃2(𝒙, 𝑡)⟩ when 𝒓 → 0. .  

We just follow Taylor and we will be interested into the study of two-point correlation 

functions and the one-point quantity will be simply coming as a special case of this ok, when 

your 𝒓 is zero. 
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And actually, then we use this quantity ⟨𝒗̃2(𝒙, 𝑡)⟩ in order to normalize the velocity correlation 

function 

 𝜎𝒗̃ =
⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 + 𝒓, 𝑡)⟩

⟨𝒗̃𝟐(𝒙, 𝑡)⟩
⇒  −1 ≤  𝜎𝒗̃ ≤ 1 

   

 which is the traditional Pearsonian correlation coefficient. People who are used to statistical 

methods, you should know this Pearsonian correlation coefficient. So, this is simply that this 

is denoted by this sign 𝜎𝒗̃ which is equal to the ensemble average of  𝒗̃ at (𝒙. 𝑡) contracted with 

the 𝒗̃(𝒙 + 𝒓, 𝑡) divided by the 𝒗̃𝟐(𝒙, 𝑡).  

And if you do that correctly, you will see that 𝜎𝒗̃ actually, one can show that always should be 

within −1 to 1 okay. 
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Now, up to this point, we have not said any assumption on the nature of the turbulence; that 

means; statistical homogeneity or isotropy anything, stationarity nothing. But at this point, for 

the sake of analytical simplicity, we have to introduce two assumptions of turbulence; one is 

statistical homogeneity, another is statistical isotropy and what is the advantage of that?  

If the system is statistically homogenous, so statistically homogeneous does not say the system 

is absolutely homogeneous. When a system is absolute homogeneous, some property is totally 

uniform in space that is the homogeneous. For example, if you are taking an incompressible 

fluid ok, it has a density homogeneity in space; that means, at every point the density is constant 

ok. 

Now, when we are talking about statistical homogeneity, it does not say that it has I mean at 

every point some quantity, for example the velocity is uniform. What it simply says that the 

two-point correlation functions should only be a function of the distance between these two 

points and not really depends on where the origin is okay i.e.,  

⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 + 𝒓, 𝑡)⟩ = 𝑓(𝒓, 𝑡) 
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So yeah, there is a 𝑡 dependence of course; but just for the space part, this is not depending on 

the origin, I mean this is not depending on the 𝒙. So, the absolute position of the points does 

not matter. So, only the mutual distance between two points that matters and so, now, what 

happens that you can actually find in your system all the points, which are let us say 𝑟 distance 

apart and for this type of couple of points, you can calculate this quantity ⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 +

𝒓, 𝑡)⟩ = 𝑓(𝒓, 𝑡) and then, you can just take the average and that will give you a reasonable 

estimate for this correlation coefficient and you will see that this will only be a function of 𝑟 

and 𝑡 okay. 



If this is statistically isotropic in addition to this, this one ⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 + 𝒓, 𝑡)⟩ will simply be 

a function of not a vector 𝒓; but only the modulus of 𝒓. It is even much more simplified 

situation. ⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 + 𝒓, 𝑡)⟩ = 𝑔(𝑟, 𝑡) 

So, it has so called spherical symmetry and of course, the 𝑡 dependence. 
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Now, in the year 1938, Von Karman and Howarth, these two persons, they after doing some 

maths, they actually showed by some tensorial arguments that the most general expression for 

two-point correlation functions which they now call it as 𝑅𝑖𝑗(𝑟), can be written like this 

𝑅𝑖𝑗(𝑟) =  ⟨𝑣𝑖(𝑥, 𝑡) 𝑣𝑗(𝑥 + 𝑟, 𝑡)⟩ = 𝐴(𝑟)𝑟𝑖𝑟𝑗 + 𝐵(𝑟)𝛿𝑖𝑗 

This because this is a tensor right.  

So, in general this ⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 + 𝒓, 𝑡)⟩ is a tensor. So, here although, I have written here this 

dot product, Von Karman and Howarth actually took that as a tensor product; that means, in 

the normal form, you have this ⟨𝒗̃(𝒙, 𝑡) ⊗ 𝒗̃(𝒙 + 𝒓, 𝑡)⟩ type of thing. Of course, in several 

literature sometimes you can have this ⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 + 𝒓, 𝑡)⟩.  

So, this ⟨𝒗̃(𝒙, 𝑡). 𝒗̃(𝒙 + 𝒓, 𝑡)⟩ is nothing but the trace of that tensor ⟨𝒗̃(𝒙, 𝑡) ⊗ 𝒗̃(𝒙 + 𝒓, 𝑡)⟩. In 

year 1938, they said that the most general form of this tensor is 𝐴(𝑟)𝑟𝑖𝑟𝑗 + 𝐵(𝑟)𝛿𝑖𝑗 , which is 

some function of some function of 𝑟 only; that means, modulus of 𝒓 vector; so, once again, 
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what is this 𝑟𝑖𝑟𝑗? you can easily understand this is nothing but 𝒓 ⊗ 𝒓 ; plus 𝐵(𝑟) which is 

another function of modulus of 𝒓 times Kronecker delta 𝛿𝑖𝑗. So, using this formula, it was much 

more-simpler for them to find according to the Taylors suggestion 
𝜕𝑅𝑖𝑗

𝜕𝑡
  ; that means, the 

evolution of the correlation function.  

But first let me just tell you that although I mean from the very beginning of this lecture, I just 

presented you the analytical pathway for terminals; that means, how starting from one-point 

quantities people switch to two-point correlation functions and finally, they tried to study their 

evolution for statistical homogeneous and isotropic turbulence. But historically, we actually 

did not do like that; historically people actually attacked the very problem of turbulence in a 

slightly different way. So, analytical treatment was there of course, but even before that in the 

year 1921 Richardson, who was an expert of weather forecasting. So, he basically gave a very 

schematic picture of the phenomenological energy transfers in different scales of turbulence. 

So, at this point, I have to mention that the notion that a turbulent system should behave like a 

multiscale system was already conceived by that time. Although by mathematics, it was not 

properly shown or it was not properly exploited, this multiscale property; but people have in 

their mind that in a turbulent system, the total flow should have a multiscale nature. That means, 

the systems have actually different forms in different scales. So, and according to the scale, the 

system behaves actually differently. 
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If irrespective of the skill the system behaves, I mean identically, then there is no problem okay. 

But I mean, what I am saying that when a system for example, say if it is a laminar flow, then 

you cut the layers transversely to its flow into smaller and smaller parts, well, the laminar nature 

will remain laminar right. 

Now, in a turbulent flow that is not the correct thing. So, if you just want to go to smaller and 

smaller scales, the picture can be different and I am coming to that and very crude and 

phenomenological view was conceived by Richardson, already by the in the year 1921 which 

was much earlier than von Karman and Howarth and even the work of Taylor. So, you see and 

to understand these things, we have to just have a look at the governing equation of the fluid 

flow. So, we have told many things about velocity, two-point velocity correlation; but till now, 

we have not talked about the equation which is governing the velocity and everything. So, that 

is Navier Stokes Equation; just for a normal incompressible fluid, 

𝜕𝒗

𝜕𝑡 
+  𝒗. 𝛁𝒗 =  −𝛁 𝑝 + 𝜈 Δ𝒗 + 𝒇 

So, 𝒇 is the external forcing term.  



So, we have to first understand that whether starting from Navier Stokes equation, we can even 

roughly try to understand the turbulent regime? Because you know that the same equation 

actually can guide can lead to laminar flow as well as turbulent flow right. So, actually what 

happens that as we have already seen in previous discussions that when the perturbation grows, 

now if you remember that the non-linear term can no longer be neglected. 

So, if you remember that when the perturbation is weak, we can linearize the system just by 

neglecting the second order smallness, I mean the terms with second order smallness okay for 

example, the term like this 𝒗. 𝛁𝒗, when your perturbation is not negligibly small, but when I 

mean it is not of first order basically, it is larger than that, then the non-linear term cannot be 

neglected anymore okay. 
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And then, simply we are beyond the regime of linear instability. So, basically how to reach to 

turbulence? this is another fundamental and very deep question. So, to be very honest, 

turbulence is a very deep and complicated subject and actually more than one course can be 

given on turbulence.  

So, just in 1 or 2 lectures, it is almost impossible to present turbulence. So, then, I mean in this 

way, when we are beyond the regime of linear instability, we reach or rather attain the regime 

of turbulence and which is simply described by a clear dominance of the non-linear terms okay. 
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So, when the perturbation grows larger and larger, then the non-linear term basically they are 

being the non-linear in perturbation, they will grow much faster than the other linear terms ok. 

That is a very common sense. So, in Navier Stokes equation, there actually exists a 

dimensionless number 𝑅𝑒 which represents the importance of the non-linear terms over the 

viscous terms and that 𝑅𝑒 is nothing but 

𝑅𝑒 =
| 𝒗. 𝛁𝒗|

|𝜈Δ𝐯|
=

𝑣𝑙

𝜈
 

This is known as the scale specific Reynolds number. If the systems Reynolds number 

corresponding to the largest scale and the largest velocity is very greater than 1, then we say 

that the system has achieved turbulence macroscopically okay.  

Macroscopically means so, what I am saying that in a system, the largest scale is the scale of 

this box for example, where there is a turbulent fluid. So, the box size is the largest scale or 

rather roughly larger scale is the scale, roughly the order which we can see in naked eye. So, 

this is the macroscopic scale. 
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And we see that in the macroscopic scale, if there are this chaotic type of arbitrary motion, then 

the large scale is this one roughly or this one. Of course, they are of the same order roughly. 

So, if that Reynolds number is very greater than 1, then the system is turbulent; the flow is 

turbulent that is by definition. 
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Now, at this point when we have already defined Reynolds number and the regime of 

turbulence depending on that. It is very important to remember that when a laminar flow 

switches to turbulent motion, initially, the symmetries of the Navier Stokes equation are lost 



but when the flow is completely turbulent, all basic symmetries are expected to restored; that 

means, the homogeneity and isotropy.  

So, in laminar, if you are thinking of the equation itself so, it is actually invariant under the 

origin I mean in both space and time. So, whether you let the fluid flow here or in London, it 

does not matter or today or tomorrow, does not matter. I mean if the other conditions for 

example the temperature and pressure, they are kept constant and then, then there is no explicit 

depending on the space and time origin and also, Navier Stokes equation is Galilean invariant. 

Navier Stokes equation is invariant under symmetric under time reversal. So, all these things 

are there ok. There is a there is a small catch ok. So, Navier Stokes equation is invariant under 

time reversal only when the viscous term is not there ok; otherwise, there can be time, I mean 

yeah, the viscous term can actually destroy the time reversal symmetry.  

So, to be very formal, the Euler equation is symmetric under time reversal; but viscous term 

which dissipates energy actually kills the time reversal symmetry. But all the symmetry which 

it has for example, homogeneity in space and time, isotropy for example, so, this type of 

symmetries are gradually lost when the flow is getting more and more turbulent. That means, 

its Reynolds number increases from 10 to 100 like this. But when the flow is completely 

turbulent; that means, the Reynolds number is greater or equal to 104 or large even I mean 

even greater actually, then the good news is all the basic symmetries of the Navier Stokes 

equations are expected to be restored statistically. Why this is so? This is not really very much 

clear, but this is actually the crude approximation and somehow, people have applied this 

hypothesis and they have seen that this works.  

So, to be very honest, this is something which already happens in nature, that is why we expect 

for any general system in turbulence that when the turbulence is completely developed or fully 

developed ok, then all the Navier Stoke symmetries are restored, but in statistical sense and 

that is why it somehow justifies of our previous hypothesis of previous assumptions of 

statistical homogeneity and isotropy. So, actually homogeneity in both space and time, to be 

very honest. 
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Now, we have discussed the analytical approach of turbulence in terms of two-point velocity 

correlation or two-point increments; but as I just said that, historically the phenomenological 

view of turbulence came much earlier using Richardson’s cascade and Kolmogorov’s 

equilibrium hypothesis and that was done actually in not in direct space, but in Fourier space, 

this part I will be discussing in the next lecture. 

So, from this lecture, the message is that turbulences are disordered out I mean out of 

equilibrium motion in both space and time and the non-linearity is dominating and also one-

point quantities are of no importance, although statistical description is important.  

Then, Taylor said that the two-point correlation functions are the quantities which we have to 

look at and then, Von Karman and Howarth, they analyzed that and studied that their 

revolution. And finally, we said that okay, so all these things are there, but of course, how to 

really, I mean without knowing anything how to characterize a turbulent regime? For that we 

started looking at the governing equations; of-course von Karman and Howarth when they 

derived their 
𝜕𝑅𝑖𝑗

𝜕𝑡
, they also use Navier Stokes equation; what else they could have used okay. 

So, now, just by introducing Navier Stokes equation, we said that there is a dimensionless 

quantity called Reynolds number, a large value of whose value can correspond to the domain 

of flow regime which is completely dominated by non-linearity and which is the turbulent 



regime. In the next lecture, I will come into the Richardson cascade picture and the 

Kolmogorov, I mean phenomenology okay. 

Thank you very much. 


