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Hello and welcome to the course of Introduction to Astrophysical fluids. Now, here 
𝐷𝑓

𝐷𝑡
≠ 0, 

what is the meaning of that? And of course, this is when traced along a particle trajectory. 

What is the meaning of that?  
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If the system allows collisions, then basically that 𝑓(𝒓, 𝒖, 𝑡) changes for a collisional system 

because of two reasons.  

1. some particles originally having velocity 𝒖 may have other velocity just after collision 

right. Thereby, leading to a loss in 𝑓(𝒓, 𝒖, 𝑡).  

So, 𝑓(𝒓, 𝒖, 𝑡) is the number of single particle states. In the phase space volume, 𝑓(𝒓, 𝒖, 𝑡) is 

the density of single particle states in the 𝜇 space, that was the definition. So, you can see that 

if there were no collision, then 𝑓(𝒓, 𝒖, 𝑡) would have just evolved dynamically according to 

some law. 

Then, you know like if the particle is now over here, then after some time where it will be 

and then, you can also calculate 𝒖 right and you can also calculate so  𝒓 ̇ . If you know this 

type of dependences and then you can also say that what will be its velocity at some 

subsequent interval okay.  

Now, the problem is that if collision comes, so this is something which is not expected. This 

inhibits a normal evolution. So, that means, if the particle was evolving according to some 

evolution, then the problem is that although we are saying that kinetic energy, momentum all 

are conserved before and after the collision. But if you are concentrating on a single particle, 

basically before and after collision its individual momentum and kinetic energy, they are 



basically changing so, remember for a single particle, both linear momentum and energy and 

kinetic energy changes before and after the collision.  

It simply says that if the particle was belonging to the particles having velocity 𝒖 for 

example, then what happens just after the collision? So, just after the collision in general, we 

assume that the particle is momentarily localized, that means, its velocity changes, but it does 

not still leave the place. So, its position will be still 𝒓 but it will have some different velocity 

okay and if this is true, then basically you can easily understand that this will lead to a loss in 

𝑓(𝒓, 𝒖, 𝑡). Because the now the particle is moving to another club of particles having some 

velocity, let us say 𝒖𝟏 or rather 𝒖′; sorry, I think 𝒖′ is okay. After the collision, I used the 

prime coordinates and then you can say now the particle is belonging to 𝑓′(𝒓, 𝒖′, 𝑡). 

So, in the same way another source of change is simply that  

2. some particles originally having; this is actually a gain; some other velocities can 

attain velocity 𝒖 after collision. So, this is a gain in 𝑓(𝒓, 𝒖, 𝑡). 

 These two effects are now non-zero. So, schematically, this can be written as 

𝐷𝑓

𝐷𝑡
𝑑3𝑢 𝑑3𝑥 =  −𝐶𝑜𝑢𝑡 + 𝐶𝑖𝑛                              (1) 

𝑓𝑑3𝑢 𝑑3𝑥 is nothing but the number of the particles in this 𝑑3𝑢 𝑑3𝑥 elementary volume of 

phase space or rather 𝜇 space and 
𝐷

𝐷𝑡
 is the change of the number with time, of course along a 

particle evolution trajectory and that will simply now be written as −𝐶𝑜𝑢𝑡 + 𝐶𝑖𝑛.  

So, if you remember R.H.S of (1) is nothing but the rate of the particles gained or lost 

through collision and that we can classify into two classes; one is the loss another one is the 

gain. 
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Now, we assume beams of particles. So, before we assume two beams of particles 𝒖 and 𝒖𝟏. 

Now, we will be interested in beams of particles having velocities in the infinitesimal range; 

one is that 𝒖 to 𝒖 +  𝒅 𝒖 and another is 𝒖𝟏 to 𝒖𝟏 +  𝒅 𝒖𝟏 respectively. If you do that, then if 

you remember the definition of 𝛿𝑛𝑐  that was this 

𝛿𝑛𝑐 = 𝐴𝑛𝑛1|𝒖 − 𝒖𝟏|𝜎(Ω)𝑑Ω 

Then, you can easily write now 𝛿𝑛𝑐  will be equal to  

𝛿𝑛𝑐 =  𝑓(𝒓, 𝒖, 𝑡)𝑑3𝑢 𝑓(𝒓, 𝒖𝟏, 𝑡)𝑑3𝑢1|𝒖 − 𝒖𝟏|𝜎(Ω)𝑑Ω  

This definition is very interesting. You can see. So, 𝑓 is the number of particles per unit 

phase space volume. Now, if it is just multiplied with the number  𝑑3𝑢, it simply says that this 

is the number of particles having position 𝒓 but having velocity ranging from 𝒖 to 𝒖 +  𝒅 𝒖  

and that is exactly what we are seeking for. Another is for the second beam 𝑓(𝒓, 𝒖𝟏, 𝑡)𝑑3𝑢1. 

Again, the rest was just |𝒖 − 𝒖𝟏|𝜎(Ω)𝑑Ω.  

Now, you remember that we are having two beams with the velocity in range 𝒖 to 𝒖 +  𝒅 𝒖 

and 𝒖𝟏 to 𝒖𝟏 +  𝒅 𝒖𝟏. But that will simply change the number densities, but the relative 

velocity will not be changed by that ok. So, this basically can be related to 𝐶𝑜𝑢𝑡 by this 

definition, I do an integration over 𝑢1 and Ω , 



𝐶𝑜𝑢𝑡 = ∫ ∫ 𝛿𝑛𝑐
Ω𝑢1

𝑑3𝑥 

Now, what is the meaning of that? Why I did that? So, finally, 𝛿𝑛𝑐  multiplied with 𝑑3𝑥 and 

integrated on 𝑢1 space and Ω space simply gives us the number of loss of the particle or the 

number of changes per unit time from the volume element 𝑑3𝑥𝑑3𝑢.  

So, finally, you will have something, where you will just have the number of the particles; 

𝛿𝑛𝑐 is nothing but the number of collisions per unit time within phase space volume 𝑑3𝑢 and 

if you now multiplied with this whole thing with 𝑑3𝑥, then finally, you will have number of 

collisions per unit time within phase space volume 𝑑3𝑥𝑑3𝑢 and we are saying that is exactly 

equal to 𝐶𝑜𝑢𝑡 right.  

If this is true, then finally, we can write that 𝐶𝑜𝑢𝑡 is nothing but  

𝐶𝑜𝑢𝑡 = 𝑑3𝑥𝑑3𝑢 ∫ ∫ 𝑓(𝒓, 𝒖, 𝑡)𝑓(𝒓, 𝒖𝟏, 𝑡)|𝒖 − 𝒖𝟏|𝜎(Ω)𝑑Ωd3𝑢1
Ω𝑢1

 

 

So, that is the definition for 𝐶𝑜𝑢𝑡. In the same way basically, you can also calculate 𝐶𝑖𝑛  just 

by tracking the collisions in back process.  

 Collisions are elastic in nature. So, there is no dissipation. So, whether the collisions are 

taking place in a forward manner or in the backward manner, they will behave identically. So, 

basically then you can see that if we consider the collisions of two particles which are coming 

and collide with velocities 𝒖′ and 𝒖𝟏
′  and after collision they have the velocities 𝒖 and 𝒖𝟏.  

So, if you consider this type of collisions in a backward direction, then basically you can 

write or you can obtain an expression for 𝐶𝑖𝑛 which will simply be 

𝐶𝑖𝑛 = 𝑑3𝑥𝑑3𝑢′ ∫ ∫ 𝑓(𝒓, 𝒖′, 𝑡)𝑓(𝒓, 𝒖𝟏
′ , 𝑡)|𝒖′ − 𝒖𝟏

′ |𝜎′(Ω)𝑑Ωd3𝑢1
′

Ω𝑢1

 

So, 𝜎′(Ω)is just the angular distribution for the backward collisional. 
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Now, remember that we have a binary collision which are elastic in nature right. Then, what 

is the good news? First, we have 

 𝒖 + 𝒖𝟏 = 𝒖′ + 𝒖𝟏
′  

before and after the collision, this is nothing but the principle of conservation of linear 

momentum because of all the particles are having identical mass. So, mass is not there. And 

we also have 

1

2
 𝑢2 +

1

2
 𝑢1

2 =
1

2
 𝑢′2

+
1

2
 𝑢1

′2 

 that is principle of conservation of kinetic energy. Again, mass is not there because this is 

cancelled. If you do this, this can be simply left to you as an exercise that you can show that it 

leads to a very simple result, this is  

|𝒖 − 𝒖𝟏| = |𝒖′ −  𝒖𝟏
′ | 

So, and if you remember, I do not know that if you are habituated with this mechanics of 

collisions, this is nothing but of saying that the coefficient of restitution is equal to 1, right. 

So, this is also another property of elastic collision.  

Finally, we consider the phase space of two colliding particles only. So, if their interaction 

can be described by a Hamiltonian then that is something not very evident. So, finally, we 



consider the phase space for two particles, which are colliding and if we say that under the 

condition that these two particles system can be described by a Hamiltonian. So, usually this 

is only possible that if their collision is taking place under some central type of force, where 

the potential is basically depending on the relative distance between them or some other 

system so that you can write the you can write a Hamiltonian for these two-particle system.  

Now, remember that these two particle systems are actually colliding with each other. If we 

write a Hamiltonian, then the corollary of Liouville’s theorem simply says that  

𝑑3𝑢𝑑3𝑢1 = 𝑑3𝑢′𝑑3𝑢1
′  

Again, a very important result. 
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Finally, you can also say just supposing the collisions are reversible, that 

𝜎(Ω) = 𝜎′(Ω)  

 Above is true because we do not have any source of irreversibility like any dissipation or 

anything okay. Finally, you can write using all the above conditions  

𝐶𝑖𝑛 = 𝑑3𝑥𝑑3𝑢 ∫ d3𝑢1 ∫ 𝑑Ω𝑓(𝒓, 𝒖′, 𝑡)𝑓(𝒓, 𝒖𝟏
′ , 𝑡)|𝒖 − 𝒖𝟏|𝜎(Ω)

Ω𝑢1

 

 



So, using the expressions of 𝐶𝑜𝑢𝑡 and 𝐶𝑖𝑛, we can finally write 

𝜕𝑓

𝜕𝑡
+ 𝒖. 𝛁 𝑓 +

𝑭

𝑚
. 𝛁𝒖𝑓 =  ∫ 𝑑3𝑢1∫ 𝜎(Ω)|𝒖 − 𝒖𝟏|[𝑓′𝑓

1
′ − 𝑓 𝑓

1
]  

Where 𝑓′ ≡ 𝑓′(𝒓, 𝒖′, 𝑡) and 𝑓1
′ ≡ 𝑓1

′(𝒓, 𝒖!
′, 𝑡) are distribution function before collision and 𝑓 ≡

𝑓(𝒓, 𝒖, 𝑡) and 𝑓1 ≡ 𝑓1(𝒓, 𝒖𝟏, 𝑡) are distribution functions before collisions. So, finally, you 

have above expression which is known as the traditionally collisional Boltzmann equation or 

simply Boltzmann equation. Whenever we say Boltzmann equation, it simply defines the 

Boltzmann equation with the collision term.  

So, here basically in this lecture after deriving the collisionless Boltzmann equation, we 

derived a version of Boltzmann equation, where we extended the Boltzmann equation for 

collisional system and the collisions are of very specific nature, they should be binary and 

they should be elastic in nature okay. 

Thank you.  


