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Hello and welcome to another lecture session of Introduction to Astrophysical Fluids. 

Previously, after deriving magnetohydrodynamic equations that is the mono-fluid model 

of plasma from kinetic theory and multi-fluid models of plasma, we discussed various 

interesting features of magnetohydrodynamic fluids. 

So, first we discuss the importance of Lorentz force, how can we decompose the Lorentz 

force into two types of contributions, one is like a magnetic pressure another is a tension 

term. Then, also we defined plasma 𝛽 and it was followed by a discussion on the frozen-

in theorem for a magnetohydrodynamic fluid. So, and then we also saw different types of 

inviscid invariants. 

So, we started by mass conservation, then we talked about the very subtle case of linear 

momentum conservation. Then we talked about some scalar invariants of which a real 

scalar invariant was the total energy which had three parts, kinetic energy, magnetic 

energy, and compressible thermodynamic energy or compressible potential energy.  

And then, we also introduced several pseudo scalars, which we called the helicities. So, 

one was the kinetic helicity which is a purely hydrodynamic concept. You may be 

accustomed with this concept already. Then, another was like the cross helicity. So, kinetic 

helicity density was nothing but the scalar product of velocity and the vorticity vector. 

Then cross helicity was introduced, it was the scalar product of velocity and the magnetic 

field vector. And finally, we said that there is another helicity which is of very importance 

in MHD turbulence and in other type of phenomena, that was the magnetic helicity which 

is the scalar product of magnetic field and magnetic vector potential. 

So, in this part we also said a few words, if you can remember that in under which 

circumstances in practical case we can really assume that our system can follow ideal 

MHD equations. And finally, we talked about the very interesting Elsässer variables and 



how can the equations of incompressible MHD can equivalently be projected in terms of 

the Elsässer variables. 

One thing was very easy to understand, but I did not really mention, I just thought that it 

is maybe good to tell you directly that is in incompressible MHD as 𝒗 and 𝒃 both are 

divergence less vectors, 𝒗 + 𝒃 and 𝒗 − 𝒃, that means, 𝒛+ and 𝒛−, they are also divergence 

less. So, the two Elsässer variables are actually two solenoidal vectors. 

So, the whole set of MHD equations in terms of Elsässer variables are constituted by 

divergence of 𝒛+ is equal to 0, divergence of 𝒛− is equal to 0 and two evolution equations, 

one for 𝒛+ and one for 𝒛−. That constitutes a complete dynamical theory. 

In today’s discussion, we will start discussing the response of an MHD fluid towards an 

external very weak or first order perturbation, linear perturbation. And actually we will see 

that there will be interesting wave modes.  

And of course, that says that our chosen initial system, which is of course is steady system, 

is such a steady system that it corresponds actually a stable equilibrium, something 

analogous to stable equilibrium system. And that is why the system when it is perturbed, 

it responds in terms of the linear modes. 
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Whenever we are discussing in this part the waves in MHD fluid, we will follow exactly 

the same steps as what we did for the neutral fluids. So, if you remember that first of all 



we start with the steady initial state. And then we perturb every quantity, by a very small 

amount, and what we call weak perturbations are linear perturbations and sometimes we 

call them first order perturbations. 

And then, we study the nature of the response given by the MHD fluid, after just expressing 

every quantity as its initial value plus the first order perturbation we try to replace all the 

values in the original equations.  

And finally, we just drop out all the 0-th order terms which are basically nullifying each 

other due to the 0-th order equations, and then we also neglect the terms which are of 

second order smallness. And then we have a set of linear equations. 

So, with that linear equation finally, we assume plane wave type of solution, and then we 

derive some relation between 𝜔, the frequency and the wave vector 𝑘, which we call in 

general the dispersion relation. Now, let us do that formally. 

So, here first of all when we study the response of an MHD fluid towards a weak 

perturbation, we will for the sake of simplicity at the first step neglect forcing and 

viscosity. It is always a very good question that what happens to the wave modes or to the 

nature of response, if we take the forcing or the viscosity into account! that is for you to 

think. It is a very good question actually. 
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Now, we start from an initial state which is a static steady state. So, not only that it is a 

steady, that means, every quantity is independent of time, but the velocity in the initial 

state is 0. So, we start with the static case.  

And then, we perturb the system by a little bit. So, 𝜌 becomes 𝜌0 + 𝜌1, where the initial 

hydrostatic density was 𝜌0, 𝒗 becomes 𝒗1 only because 𝒗0 is 0 by definition. So, 𝑩 is the 

magnetic field and it is just the initial 𝑩0 plus the fluctuation or plus the perturbation. And 

same thing for the pressure, so initial pressure 𝑝0, plus 𝑝1, first order perturbation. 

Now, when we linearize the continuity equation then the equation becomes  

𝜕

𝜕𝑡
(𝜌0 + 𝜌1) + 𝛁 ⋅ [(𝜌0 + 𝜌1)(𝒗0 + 𝒗1)] = 0. 

Now, 
𝜕𝜌0

𝜕𝑡
= 0, as 𝒗0 = 𝟎, so that is why the 0-th order term is 0. We also neglect 𝜌1𝒗1 

because of the second order smallness. 

So, 
𝜕𝜌1

𝜕𝑡
 is of course, with first order smallness plus 𝜌0𝒗1, that is also first order smallness. 

So, the linearized equation of continuity is 
𝜕𝜌1

𝜕𝑡
+ 𝜌0(𝛁 ⋅ 𝒗1) = 0. 
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Then, we do the same thing for the momentum evolution equation, where you can easily 

understand that this is again, so there will be 𝜌
𝜕𝒗

𝜕𝑡
, now only 𝜌0 can be taken because there 



is no 𝒗0. So, in order that the total thing to be of first order, the part of 𝜌 should contribute 

to 0-th order because the only nonzero contribution from 
𝜕𝒗

𝜕𝑡
 would come in the first order, 

there is no 0-th order for this part. 

So, that is why we have 𝜌0
𝜕𝒗1

𝜕𝑡
 and you know that there should be no contribution from the 

part (𝒗1 ⋅ 𝛁)𝒗1 because of its second order smallness. So, we forget that.  

So, ∇𝑝0 will be balancing with the 0-th order term of the Lorentz force of course and you 

see that here we can actually, if you remember, neglect the body force or for example, 

some force like gravity only because you have here another term other than the 𝑝, which 

is the Lorentz force. 

If this Lorentz force term is not present here, then we have to take into account the body 

force and that is our very usual hydrostatic equilibrium and the hydrostatic first order 

perturbation under gravity or under some conservative force field. But here we really do 

not need that. That is simply because that we have 𝛁𝑝1 and 
1

𝜇0
[(𝛁 × 𝑩1) × 𝑩0]. 
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So, in the 0-th order for example, what happens? you just have −𝛁𝑝0 +
1

𝜇0
[(𝛁 × 𝑩0) ×

𝑩0)]. 
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And if you just choose 𝑩0 to be a constant then 
1

𝜇0
[(𝛁 × 𝑩0) × 𝑩0)] is 0, but if you do not 

choose 𝑩0 to be constant in space, but it will then simply be cancelled by 𝛁𝑝0. Why? 

Because the 0-th order term will be taken care by the 0-th order contribution of pressure.  

So, now only surviving term is 
1

𝜇0
[(𝛁 × 𝑩1) × 𝑩0)]. You also have 

1

𝜇0
[(𝛁 × 𝑩0) × 𝑩1)], 

so that is also a bit typical because most of the cases we have seen that the initial magnetic 

fields are in general uniform in space. Maybe sometimes they can have some time 

dependence, but 𝑩0 almost uniform in space. But there can be actually instances where 

you can actually keep 
1

𝜇0
[(𝛁 × 𝑩0) × 𝑩1)]. 
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Actually there is no inhibition in writing that one, but here just for the sake of simplicity 

we have not written it. So, this is somehow a simplified form and we cannot write both as 

𝑩1 because that would get a second order smallness. So, we forget that. 

So, finally, we can write 
𝜕𝒗1

𝜕𝑡
= −

𝛁𝑝1

𝜌0
+ [(𝛁 × 𝒃1) × 𝒃0)]. 

How did we get that? We have simply got that just by replacing 𝑩 by 𝒃. And that was 

quite easy because if you simply divide everything by 𝜌0 and you have one 𝜇0 on the RHS. 
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So, then you have 𝒃0 =
𝑩0

√𝜇0𝜌0
 and 𝒃1 =

𝑩1

√𝜇0𝜌0
 and you are done. 
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Now, the third equation of magnetohydrodynamics is the equation of Faraday. So, 

equation of induction, which simply says that 
𝜕𝒃

𝜕𝑡
= 𝛁 × (𝒗 × 𝒃).  

Now, once again 𝒗 cannot have any 𝒗0 amount, so in order that the total thing should be 

exactly a first order, 0-th order cannot be there because 0-th order will be cancelled by the 



0-th order part of the on the left side. So, there cannot be any term like 𝛁 × (𝒗0 × 𝒃1), as 

𝒗0 = 𝟎. 

Here I can write the original equation in terms of 𝑩, but just by dividing every side by 

√𝜇0𝜌0, you can define your 𝒃. So, then your Faraday equation is 
𝜕𝒃1

𝜕𝑡
= 𝛁 × (𝒗1 × 𝒃0), 

and finally we consider a polytropic MHD fluid. 
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So, polytropic fluid means 𝑝 = 𝐾𝜌𝛾. But when we are talking in terms of the first order 

perturbations, if you recall what we did for ordinary hydrodynamic fluid, we said that even 

if the equation is polytropic there will be always a proportionality relation between the 

first order perturbation in pressure and first order perturbation in density, 𝑝1 = 𝑐𝑠
2𝜌1. And 

the proportionality constant is nothing but the equilibrium sound speed square. So 𝑐𝑠
2 =

𝛾𝑝0

𝜌0
. 

So, we are done. We have four equations which we need. 
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So, now what we do? As a next step we simply assume plane wave solutions for the 

perturbed quantities. So, for an arbitrary perturbed quantity 𝝍, we can write the perturbed 

quantity as 𝝍10𝑒𝑖(𝒌⋅𝒓−𝜔𝑡). 

So, you can also reason this in this part that as the equations are linear in nature for all 𝒃1, 

𝒗1, 𝑝1, 𝜌1, so for all these quantities simply we can assume the solution as a sum of the 

Fourier components. And there we just choose one single Fourier component and we will 

study the relation between the frequency and the wave vector for that particular Fourier 

component. So, that is the philosophy of this treatment. 

So, then finally, you can just substitute all this type of plane wave solutions in the previous 

equations. And finally, you will be given 𝜔𝑝1 = 𝜌0𝑐𝑠
2(𝒌 ⋅ 𝒗1). Now, this one is not exactly 

obtained from the continuity equation.  
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So, if you just assume plane wave type of solution this one then any 
𝜕

𝜕𝑡
 will be simply 

converted into −𝑖𝜔 and any 𝛁 will be converted with 𝑖𝒌. So, 
𝜕𝜌1

𝜕𝑡
= −𝑖𝜔𝜌10𝑒𝑖(𝒌⋅𝒓−𝜔𝑡) and 

𝜌0(𝛁 ⋅ 𝒗1) = 𝑖𝜌10(𝒌 ⋅ 𝒗1)𝑒𝑖(𝒌⋅𝒓−𝜔𝑡). 
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So the continuity equation becomes −𝑖𝜔𝜌10 + 𝑖𝜌10(𝒌 ⋅ 𝒗1) = 0. Now, you just multiply 

𝑐𝑠
2 throughout. So, 𝑐𝑠

2𝜌10 will give you 𝑝10. And then you just take 𝑖 out of the equation, 

and you have  

𝜔𝑝1 = 𝜌0𝑐𝑠
2(𝒌 ⋅ 𝒗1). 

So, once again, this is very easy to understand, you just have to multiply 𝑐𝑠
2 to the both 

sides of the linearized continuity equation. 

And the linearized momentum evolution equation gives you simply  

𝜔𝒗1 = 𝒌 [
𝑝1

𝜌0
+ 𝒃0 ⋅ 𝒃1] − 𝑏0𝑘∥𝒃1. 

Now, what is 𝑘∥? 𝑘∥ is nothing but the projection of the propagation vector in the direction 

of 𝒃0. So, if you want, this is nothing but (𝒃0 ⋅ 𝒌). 

  

 

 

 



(Refer Slide Time: 21:03) 

 

And the induction equation, as one can easily guess, will be equal to  

𝜔𝒃1 = −𝑏0𝑘∥𝒗1 + 𝑏0(𝒌 ⋅ 𝒗1). 

So, once again 𝑏0𝑘∥ is nothing but (𝒃0 ⋅ 𝒌). 
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So, you already can see that this gives us the complete set of equations which are no longer 

differential equations, but they are set of algebraic equations. 

Now, we have three algebraic equations and we have actually three unknowns. Which are 

those three unknowns? 𝒗1, 𝒃1, 𝑝1. And our basic objective is to get rid of all these three to 

get the relation between 𝜔 and 𝒌, which is known as the dispersion relation. And if that 

dispersion relation can give us real frequency, then we will confirm that there will be linear 

wave modes, if there will be an imaginary part in the 𝜔 then we have the possibility of a 

linear instability. 

So, if we just eliminate at the first step 𝒃1 and 𝑝1, we simply get  

[𝜔2 − (𝒌 ⋅ 𝒃0)]𝒗1 = [(𝑐𝑠
2 + 𝑏0

2)(𝒌 ⋅ 𝒗1) − (𝒗1 ⋅ 𝒃0)(𝒌 ⋅ 𝒃0)]𝒌 − (𝒌 ⋅ 𝒃0)(𝒌 ⋅ 𝒗1)𝒃0. 

So, this is the whole thing where you cannot see 𝑝1, you cannot see 𝒃1, the only variable 

is 𝒗1. 

Now, so this is another technique when you have an equation like this, so directly you 

cannot find from here, 𝜔 as a function of 𝑘. So, first of all you have to get rid of two 

unknowns and then you just reduce everything in only one vectorial unknown and here 

which is the 𝒗1. 
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And then what you have to do? This is a classical trick that you have to learn. So, now, 

first of all we would do some smart choice of the direction of the propagation vector, and 

you will see why this is very good. We just choose without losing any generality that our 

𝒌 is having two components, 𝒌 = 𝑘⊥ 𝒆̂𝒚 + 𝑘∥𝒆̂𝒛 .  

So, along 𝑥-direction there is no component for 𝒌, only 𝑘⊥ is along 𝑦-direction and 𝑘∥ is 

about 𝑧-direction, the parallel sign comes when it is parallel to 𝑩0 or 𝒃0. So, it is simply 

written as 𝑩0 = 𝐵0𝒆̂𝒛 and then you can simply say that the 𝑦-direction will be 

perpendicular to 𝑩0. 

If we project those equations, in this choice of 𝑘 and 𝑩0, then the total equation, as you 

can easily understand, it is a vector equation in 𝒗1. So, there should be three component 

equations, and we can write the whole set of three component scalar equations 

corresponding to every component in matrix form and this matrix is now written in a block 

form 

 (

𝜔2 − 𝑘∥
2𝑏0

2 0 0

0 𝜔2 − 𝑘⊥
2𝑐𝑠

2 − 𝑘2𝑏0
2 −𝑘⊥𝑘∥𝑐𝑠

2

0 −𝑘⊥𝑘∥𝑐𝑠
2 𝜔2 − 𝑘∥

2𝑐𝑠
2

) (

𝑣1𝑥

𝑣1𝑦

𝑣1𝑧

) = (
0
0
0

). 

The ideal would be if that would be totally diagonalize; that means, you have terms only 

on diagonal positions and otherwise nothing anywhere. But this is a bit worse than that, 



but still we should be happy because at least we can decouple one mode totally from the 

other two modes. 
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So, if you now write this in this matrix form then one can easily say that from the linear 

algebra that for nontrivial solution of 𝒗1, what is the necessary and the required condition? 

that the determinant of this whole matrix must vanish. And this when you calculate the 

determinant of the matrix and will equate it to 0 that will give you the dispersion relation. 

So, just remember this trick that trick is actually is useful for many general systems. 

And then the dispersion relation finally is free of 𝒗1, 𝒃1 and 𝑝1 will simply carry relation 

between 𝜔, 𝑘 and other constants of the system. So, what is that relation?  

(𝜔2 − 𝑘∥
2𝑏0

2)[𝜔4 − (𝑐𝑠
2 + 𝑏0

2)𝑘2𝜔2 + 𝑘2𝑐𝑠
2𝑘∥

2𝑏0
2] = 0. 
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Now, we can easily understand that from this one since we are not talking about the 

negative solutions of 𝜔. So, just considering positive solutions of 𝜔, we can see that there 

are three solutions which are possible. 

So, the first one is of course 𝜔𝐴 = 𝑘∥𝑏0. So, another way of writing this is, 𝜔𝐴 is nothing 

but 𝒌 ⋅ 𝒃0, that is another point way of writing. And this mode is called Alfvén mode. This 

mode is of super importance in different aspects of MHD, including MHD turbulence, 

other phenomena like heating, high correlation between 𝒗 and 𝒃 etc. 

Now, the other two solutions which can be obtained from this equation,  

𝜔+ =
𝑘

√2
√(𝑐𝑠

2 + 𝑏0
2) + √(𝑐𝑠

2 + 𝑏0
2)2 − 4𝑐𝑠

2𝑏0
2

𝑘∥
2

𝑘2
, 

this is called the fast mode. And we also have  

𝜔− =
𝑘

√2
√(𝑐𝑠

2 + 𝑏0
2) − √(𝑐𝑠

2 + 𝑏0
2)2 − 4𝑐𝑠

2𝑏0
2

𝑘∥
2

𝑘2
, 

called the slow mode. 
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Now, it is true that when your equations are incompressible MHDs equation, that means, 

all the velocity vector is solenoidal, all the 𝒌 ⋅ 𝒗 type of things are 0, because divergence 

of 𝒗 is equal to 0. 

So, in this type of case you can simply understand that Alfvén mode is an incompressible 

MHD mode because at this condition only one mode survives and that is the Alfvén mode. 

That you can actually check. So, my suggestion will be to start directly from the linearized 

equations and try to understand which thing should be changed if you have incompressible 

MHD. So, actually you will see that this is somehow very easy to show that only one wave 

mode will then be retained and should have a dispersion relation like (𝜔2 − 𝑘∥
2𝑏0

2) = 0. 

Then another point is that actually one can show, that the phase velocity of the slow mode 

is actually less than or equal to the phase velocity of the Alfvén mode and that will be less 

than equal to the phase velocity of the fast mode i.e., 𝑣− ≤ 𝑣𝐴 ≤ 𝑣+. 
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But before that let us do something very interesting. First of all, I said that if your set of 

equations are of incompressible nature, then I said that just you can check and verify that 

the only dispersion relation which you get is that of the Alfvén modes. But we can do 

something very easily. We can just say that if we just take the dispersion relation of the 

Alfvén mode which is 𝜔 = 𝜔𝐴 = 𝑘∥𝑏0, and then we simply write the expressions 𝑣1𝑥, 𝑣1𝑦 

and 𝑣1𝑧, obtained from the matrix above, we have for 𝑣1𝑥, (𝜔2 − 𝑘∥𝑏0
2)𝑣1𝑥 = 0 and which 

simply says that as (𝜔2 − 𝑘∥𝑏0
2) is 0 then this equation will be true even when 𝑣1𝑥 is 

nonzero. 

Now, what happens for other two equations? So, for example, if you write those two 

equations in a set of linear equations then you will see that it is  

(𝜔2 − 𝑘⊥
2𝑐𝑠

2 − 𝑘2𝑏0
2)𝑣1𝑦 − 𝑘⊥𝑘∥𝑐𝑠

2𝑣1𝑧 = 0, 

−𝑘⊥𝑘∥𝑐𝑠
2𝑣1𝑦 + (𝜔2 − 𝑘∥

2𝑐𝑠
2)𝑣1𝑧 = 0. 

Now, I am just checking how does it behave when 𝜔 = 𝑘∥𝑏0. 

Now, if I just use this value for 𝜔, then I will simply get  

−𝑘⊥
2(𝑐𝑠

2 + 𝑏0
2)𝑣1𝑦 − 𝑘⊥𝑘∥𝑐𝑠

2𝑣1𝑧 = 0, 

−𝑘⊥𝑘∥𝑐𝑠
2𝑣1𝑦 − 𝑘∥

2(𝑐𝑠
2 + 𝑏0

2)𝑣1𝑧 = 0. 
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So, I just eliminate 𝑣1𝑦 from both these equations and after necessary cancellations, you 

will have the relation, 𝑐𝑠
4𝑣1𝑧 = (𝑐𝑠

2 + 𝑏0
2)2𝑣1𝑧 . 

 So, one possibility is of course, 𝑣1𝑧 is 0, the other possibility is 𝑐𝑠
4 = (𝑐𝑠

2 + 𝑏0
2)2. As 𝑐𝑠

2 

should be positive, then 𝑐𝑠
2 = (𝑐𝑠

2 + 𝑏0
2). 
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As 𝑣1𝑧 ≠ 0, that simply gives us 𝑏0
2 = 0, and which is not possible, which simply violates 

our main assumption that there is a magnetic field. Otherwise, this is no longer an MHD 



fluid. So, this is impossible. So, 𝑣1𝑧 must be equal to 0. And similarly, you can show 𝑣1𝑦 

is also 0. 

So, the only nonzero component of 𝒗 is the 𝑥-component. And so, our 𝒗 can be written as 

𝒗 = {𝑣, 0,0}, but our propagation vector is 𝒌 = {0, 𝑘⊥, 𝑘∥}. So, we can simply write that 

𝒌 ⋅ 𝒗 = 0. So, the particle velocity is perpendicular to the wave propagation and that is the 

definition of a transverse mode. 

So, when you simply pluck at one point of a tense string and then release it, then basically 

the string vibrates and the vibration is propagating in the direction perpendicular to the 

particles’ vibration. So, this is nothing but a classical example of our transverse wave. And 

you all know that light, heat, all these electromagnetic waves in vacuum are always 

perfectly transverse waves. So, transverse simply means that the particle velocity and the 

propagation direction they are mutually perpendicular. Now, simply once again, so as this 

is the case 𝒌 ⋅ 𝒗, so in our case 𝒗 is parallel to 𝑥, and so the Fourier component of 𝒗 is also 

parallel to 𝑥. And then we can actually get 𝒌 ⋅ 𝒗𝒌 = 0. So, it simply says, this is nothing 

but the incompressibility condition. So, this wave mode is also incompressible. And that 

is why even in this wave mode appears as a totally decoupled mode from the other two 

modes in the compressible MHD, the nature of this mode is in incompressible in nature. 
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Now, my question is, what about the dispersive nature of Alfvén wave? Well, the 

dispersion relation is 𝜔 = 𝒌 ⋅ 𝒗𝐴 and here the question is how to define the phase velocity?  



So, it’s 𝜔 by the wave vector parallel to the direction of propagation (𝑘∥), and that is 

exactly the proper definition of phase velocity and that is simply given here just by 𝑣𝐴. 
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On the other hand, if you do group velocity, it is nothing but 𝑣𝑔 = |𝛁𝒌𝜔|. And if you do 

this one rightly, you will see that is also equal to 𝑣𝐴. 
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So, 𝑣𝑔 is equal to 𝑣𝑝 and they are they are independent of 𝒌. So, this is a non-dispersive 

mode. Non-dispersive mode as 𝑣𝑝 =
𝜔

𝑘∥
= 𝑣𝑔 = |𝛁𝒌𝜔|. 
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So, this is the brief story about the Alfvén mode. What about the other two? 
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So, there are two other modes, one is called the fast mode, and other, the slow mode. So, 

the fast mode has the dispersion relation  

𝜔+ =
𝑘

√2
√(𝑐𝑠

2 + 𝑏0
2) + √(𝑐𝑠

2 + 𝑏0
2)2 − 4𝑐𝑠

2𝑏0
2

𝑘∥
2

𝑘2
. 

So, just try to understand the factor, √(𝑐𝑠
2 + 𝑏0

2)2 − 4𝑐𝑠
2𝑏0

2 𝑘∥
2

𝑘2, can have a maximum value 

when 4𝑐𝑠
2𝑏0

2 𝑘∥
2

𝑘2 is minimum, because this is getting subtracted and this term is minimum 

when 𝑘∥ is equal to 0. 
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So, that means, when the propagation is perpendicular to 𝒃0. That means, the propagation 

vector has no parallel component. 

Now, so that is the maximum case and the minimum case is when 𝑘∥ is almost equal to 𝑘. 

And then what happens? The factor inside the second square root is |𝑐𝑠
2 − 𝑏0

2|. Now, we 

do not know which one is greater.  

So, if your 𝛽 is greater than 1, then 𝑐𝑠 > 𝑏0, so it should be then this one should be equal 

to (𝑐𝑠
2 − 𝑏0

2). And if we are considering the case of a low 𝛽, then this one will be simply 

(𝑏0
2 − 𝑐𝑠

2). 
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So, in the first case, what happens? 
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So, phase speed for the maximum speed is given by 𝑣+ =
𝜔+

𝑘
= √𝑐𝑠

2 + 𝑏0
2. 
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Now, what will be the minimum phase speed?  
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For high 𝛽, we have 𝑣𝑝 = 𝑐𝑠. So, for high 𝛽, the fast mode reduces to nothing but an 

acoustic mode, sound wave mode.  

And for low 𝛽 the fast mode reduces to an Alfvén mode. And that is actually when its 

propagation is parallel (error in lecture) to 𝒃0, because this is minimum when 𝑘∥ is almost 

equal to the 𝑘. 
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So, that means, the propagation vector is almost aligned with respect to the 𝒃0. But this is 

also the transverse mode. 

So, you see that the minimum phase speed corresponds to the sound speed for high 𝛽 and 

corresponds to Alfvén speed for low 𝛽. I must also mention that 𝑏0 is also the Alfvén speed 

for us i.e., 𝑏0 = 𝑣𝐴. 
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Now what is the story for slow mode? So, for slow modes what happens? So,  

𝜔− =
𝑘

√2
√(𝑐𝑠
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2 + 𝑏0
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Proceeding as above, we obtain 
𝜔−

𝑘
= 𝑐𝑠 for 𝑏0 > 𝑐𝑠 and 

𝜔−

𝑘
= 𝑏0 for 𝑐𝑠 > 𝑏0. 



So, if your system has a high 𝛽, the fast mode becomes acoustic, but the slow mode 

becomes Alfvénic. When your system has a low 𝛽, the fast mode becomes Alfvénic, the 

slow mode becomes acoustic. Now, my question to you to think, are fast and slow modes 

dispersive? And actually if you think very deeply you will see that none of these three 

modes are dispersive in nature in general. 

So, here actually at this point I am just putting an end to the discussion of the waves in 

MHD. And it is a very vast chapter, there are several books which are only written on the 

waves in MHD. So, this is a vast subject of research and analysis.  

So, now, in the context of space and astrophysics these wave modes are very very 

important because this leads to several phenomena and this controls different type of 

behavior of a MHD fluid. And that is why very good knowledge, even if not much 

mathematical knowledge, but at least a very good knowledge about those three modes are 

very much important. 

So, one thing to be said that unlike the incompressible Alfvén mode the last two modes 

which are the fast mode and the slow mode, they are only appearing when your system is 

compressible, when you are talking about compressible MHD. So, that is why these two 

modes are known as sonic modes and they are called fast magnetosonic mode and slow 

magnetosonic mode.  

Since, there are the two contributions in general, one is from magnetic field another is from 

the acoustic wave, that is why they are called fast and slow magnetosonic or 

magnetoacoustic modes, all these vocabularies are there. 

So, from the next lecture we will start discussing two or three interesting applications of 

MHD and then I will pass to the discussion of turbulence as well. 

Thank you very much. 


