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Lecture - 49
Linear wave modes in MHD

Hello and welcome to another lecture session of Introduction to Astrophysical Fluids.
Previously, after deriving magnetohydrodynamic equations that is the mono-fluid model
of plasma from kinetic theory and multi-fluid models of plasma, we discussed various
interesting features of magnetohydrodynamic fluids.

So, first we discuss the importance of Lorentz force, how can we decompose the Lorentz
force into two types of contributions, one is like a magnetic pressure another is a tension
term. Then, also we defined plasma £ and it was followed by a discussion on the frozen-
in theorem for a magnetohydrodynamic fluid. So, and then we also saw different types of

inviscid invariants.

So, we started by mass conservation, then we talked about the very subtle case of linear
momentum conservation. Then we talked about some scalar invariants of which a real
scalar invariant was the total energy which had three parts, kinetic energy, magnetic
energy, and compressible thermodynamic energy or compressible potential energy.

And then, we also introduced several pseudo scalars, which we called the helicities. So,
one was the kinetic helicity which is a purely hydrodynamic concept. You may be
accustomed with this concept already. Then, another was like the cross helicity. So, kinetic
helicity density was nothing but the scalar product of velocity and the vorticity vector.
Then cross helicity was introduced, it was the scalar product of velocity and the magnetic
field vector. And finally, we said that there is another helicity which is of very importance
in MHD turbulence and in other type of phenomena, that was the magnetic helicity which
is the scalar product of magnetic field and magnetic vector potential.

So, in this part we also said a few words, if you can remember that in under which
circumstances in practical case we can really assume that our system can follow ideal

MHD equations. And finally, we talked about the very interesting Elsasser variables and



how can the equations of incompressible MHD can equivalently be projected in terms of

the Elsasser variables.

One thing was very easy to understand, but | did not really mention, | just thought that it
is maybe good to tell you directly that is in incompressible MHD as v and b both are
divergence less vectors, v + b and v — b, that means, z* and z~, they are also divergence

less. So, the two Elsésser variables are actually two solenoidal vectors.

So, the whole set of MHD equations in terms of Elsdsser variables are constituted by
divergence of z* is equal to 0, divergence of z™~ is equal to 0 and two evolution equations,

one for z* and one for z~. That constitutes a complete dynamical theory.

In today’s discussion, we will start discussing the response of an MHD fluid towards an
external very weak or first order perturbation, linear perturbation. And actually we will see

that there will be interesting wave modes.

And of course, that says that our chosen initial system, which is of course is steady system,
is such a steady system that it corresponds actually a stable equilibrium, something
analogous to stable equilibrium system. And that is why the system when it is perturbed,

it responds in terms of the linear modes.
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Whenever we are discussing in this part the waves in MHD fluid, we will follow exactly

the same steps as what we did for the neutral fluids. So, if you remember that first of all



we start with the steady initial state. And then we perturb every quantity, by a very small
amount, and what we call weak perturbations are linear perturbations and sometimes we

call them first order perturbations.

And then, we study the nature of the response given by the MHD fluid, after just expressing
every quantity as its initial value plus the first order perturbation we try to replace all the

values in the original equations.

And finally, we just drop out all the 0-th order terms which are basically nullifying each
other due to the O-th order equations, and then we also neglect the terms which are of

second order smallness. And then we have a set of linear equations.

So, with that linear equation finally, we assume plane wave type of solution, and then we
derive some relation between w, the frequency and the wave vector k, which we call in

general the dispersion relation. Now, let us do that formally.

So, here first of all when we study the response of an MHD fluid towards a weak
perturbation, we will for the sake of simplicity at the first step neglect forcing and
viscosity. It is always a very good question that what happens to the wave modes or to the
nature of response, if we take the forcing or the viscosity into account! that is for you to
think. It is a very good question actually.
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Now, we start from an initial state which is a static steady state. So, not only that it is a
steady, that means, every quantity is independent of time, but the velocity in the initial

state is 0. So, we start with the static case.

And then, we perturb the system by a little bit. So, p becomes p, + p;, where the initial
hydrostatic density was p,, v becomes v, only because v, is 0 by definition. So, B is the
magnetic field and it is just the initial B, plus the fluctuation or plus the perturbation. And

same thing for the pressure, so initial pressure p,, plus p;, first order perturbation.

Now, when we linearize the continuity equation then the equation becomes
0
7t (po + p1) + V- [(po + p1)(Wo +v,)] = 0.

Now, % = 0, as vy = 0, so that is why the 0-th order term is 0. We also neglect p, v,

because of the second order smallness.

apq - . . . .
So, % is of course, with first order smallness plus p,v,, that is also first order smallness.

So, the linearized equation of continuity is % +po(V-vy) =0.
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Then, we do the same thing for the momentum evolution equation, where you can easily

understand that this is again, so there will be p %, now only p, can be taken because there



IS N0 v,. So, in order that the total thing to be of first order, the part of p should contribute
to 0-th order because the only nonzero contribution from % would come in the first order,

there is no O-th order for this part.

So, that is why we have p, % and you know that there should be no contribution from the

part (v, - V)v, because of its second order smallness. So, we forget that.

So, Vp, will be balancing with the 0-th order term of the Lorentz force of course and you
see that here we can actually, if you remember, neglect the body force or for example,
some force like gravity only because you have here another term other than the p, which
is the Lorentz force.

If this Lorentz force term is not present here, then we have to take into account the body
force and that is our very usual hydrostatic equilibrium and the hydrostatic first order

perturbation under gravity or under some conservative force field. But here we really do

not need that. That is simply because that we have Vp, and “i [(VX B,) X By].
0
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So, in the O-th order for example, what happens? you just have —Vp, + ﬂi [(V X B,) %
0

By)].
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And if you just choose B, to be a constant then ”i [(V X By) X By)]is 0, but if you do not
0

choose B, to be constant in space, but it will then simply be cancelled by Vp,. Why?

Because the 0-th order term will be taken care by the 0-th order contribution of pressure.

So, now only surviving term is ui [(V X B;) X B,)]. You also have ui [(V X By) X By)],
0 0

so that is also a bit typical because most of the cases we have seen that the initial magnetic
fields are in general uniform in space. Maybe sometimes they can have some time

dependence, but B, almost uniform in space. But there can be actually instances where

you can actually keep i [(V X Bgy) X By)].
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Actually there is no inhibition in writing that one, but here just for the sake of simplicity
we have not written it. So, this is somehow a simplified form and we cannot write both as

B, because that would get a second order smallness. So, we forget that.
So, finally, we can write % =— % + [(V X by) X by)].
0

How did we get that? We have simply got that just by replacing B by b. And that was

quite easy because if you simply divide everything by p, and you have one u, on the RHS.
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So, then you have b, = —Bo_ and b, = 21 and you are done.

v HoPo v HoPo
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Now, the third equation of magnetohydrodynamics is the equation of Faraday. So,
equation of induction, which simply says that % =V X (v Xb).

Now, once again v cannot have any v, amount, so in order that the total thing should be

exactly a first order, O-th order cannot be there because 0-th order will be cancelled by the



0-th order part of the on the left side. So, there cannot be any term like V x (v, X b,), as

v0=0.

Here | can write the original equation in terms of B, but just by dividing every side by
 HoPo, You can define your b. So, then your Faraday equation is % =V X (v, X by),

and finally we consider a polytropic MHD fluid.
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So, polytropic fluid means p = KpY. But when we are talking in terms of the first order
perturbations, if you recall what we did for ordinary hydrodynamic fluid, we said that even
if the equation is polytropic there will be always a proportionality relation between the
first order perturbation in pressure and first order perturbation in density, p; = c2p,. And

the proportionality constant is nothing but the equilibrium sound speed square. So ¢2 =

¥Po
po

So, we are done. We have four equations which we need.
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So, now what we do? As a next step we simply assume plane wave solutions for the
perturbed quantities. So, for an arbitrary perturbed quantity ¥, we can write the perturbed

quantity as i, ek T=®0,

So, you can also reason this in this part that as the equations are linear in nature for all b,
V4, Py, P1, SO for all these quantities simply we can assume the solution as a sum of the
Fourier components. And there we just choose one single Fourier component and we will
study the relation between the frequency and the wave vector for that particular Fourier
component. So, that is the philosophy of this treatment.

So, then finally, you can just substitute all this type of plane wave solutions in the previous
equations. And finally, you will be given wp; = poc2(k - v1). Now, this one is not exactly
obtained from the continuity equation.
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So, if you just assume plane wave type of solution this one then any % will be simply

converted into —iw and any V will be converted with ik. So, % = —iwp;pet®T=®D and

po(V 1) = ipso(k - vy)e'*r=0),
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So the continuity equation becomes —iwp;o + ip1o(k - v;) = 0. Now, you just multiply

c2 throughout. So, c2p,, will give you p,,. And then you just take i out of the equation,

and you have

wp, = Pocsz(k V).

So, once again, this is very easy to understand, you just have to multiply c? to the both

sides of the linearized continuity equation.

And the linearized momentum evolution equation gives you simply
_ P1
wvy =k [E +b, - bl] — bok;b;.

Now, what is k;? k is nothing but the projection of the propagation vector in the direction

of b,. So, if you want, this is nothing but (b, - k).
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And the induction equation, as one can easily guess, will be equal to
(,l)bl = —bok"vl + bo(k . vl).

So, once again byk is nothing but (b, - k).
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So, you already can see that this gives us the complete set of equations which are no longer

differential equations, but they are set of algebraic equations.

Now, we have three algebraic equations and we have actually three unknowns. Which are
those three unknowns? v,, b4, p,. And our basic objective is to get rid of all these three to
get the relation between w and k, which is known as the dispersion relation. And if that
dispersion relation can give us real frequency, then we will confirm that there will be linear
wave modes, if there will be an imaginary part in the w then we have the possibility of a

linear instability.
So, if we just eliminate at the first step b, and p,, we simply get
[w? = (k- by)]v, = [(cZ + b§ 0)(k-vy) — (vy - bo)(k - bo)]k — (k- by)(k - v1)b,.

So, this is the whole thing where you cannot see p,, you cannot see b, the only variable

IS v,.

Now, so this is another technique when you have an equation like this, so directly you
cannot find from here, w as a function of k. So, first of all you have to get rid of two
unknowns and then you just reduce everything in only one vectorial unknown and here

which is the v;.
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And then what you have to do? This is a classical trick that you have to learn. So, now,
first of all we would do some smart choice of the direction of the propagation vector, and
you will see why this is very good. We just choose without losing any generality that our

k is having two components, k = k, &, + ke, .

So, along x-direction there is no component for k, only k, is along y-direction and kj, is
about z-direction, the parallel sign comes when it is parallel to B, or b,. So, it is simply
written as B, = Byé, and then you can simply say that the y-direction will be

perpendicular to B,,.

If we project those equations, in this choice of k and B, then the total equation, as you
can easily understand, it is a vector equation in v,. So, there should be three component
equations, and we can write the whole set of three component scalar equations
corresponding to every component in matrix form and this matrix is now written in a block

form
(1)2 — kuzbg 0 0 Vix 0
0 (1)2 - sz_CSZ - kzbg —kJ_k"Cg <v1y> = (O)
0 —k kyc? w? — kicz) \Viz 0

The ideal would be if that would be totally diagonalize; that means, you have terms only

on diagonal positions and otherwise nothing anywhere. But this is a bit worse than that,



but still we should be happy because at least we can decouple one mode totally from the

other two modes.

(Refer Slide Time: 26:25)

-~ - T —w - -

omd We L wnte He above sob 0 gualions o

wm- kul b;\‘ O O v Ix 0
0 ¢ S T B

0 W=K, €~k b, = kyky Csl Viy =0

0 - ky ky ¢t w” - kire ) \Vie 2

.

o . -
* v o mewdirial seludion of V) Re dekorminant
ob dhe Lefficient mabit sheuld ba zoco = Dispurtion
velation —ﬁ

L
(= k,%lo}) Lwl‘ - (C:’—+ b?) Ke® + kLqu' kul B:’]: 0

So, if you now write this in this matrix form then one can easily say that from the linear
algebra that for nontrivial solution of v,, what is the necessary and the required condition?
that the determinant of this whole matrix must vanish. And this when you calculate the
determinant of the matrix and will equate it to 0 that will give you the dispersion relation.

So, just remember this trick that trick is actually is useful for many general systems.

And then the dispersion relation finally is free of v;, b; and p; will simply carry relation

between w, k and other constants of the system. So, what is that relation?

(w? — kb)) [w* — (¢ + b3)k?w? + k2cZkib3] = 0.
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Now, we can easily understand that from this one since we are not talking about the
negative solutions of w. So, just considering positive solutions of w, we can see that there

are three solutions which are possible.

So, the first one is of course w, = kb,. So, another way of writing this is, w, is nothing
but k - b, that is another point way of writing. And this mode is called Alfvén mode. This
mode is of super importance in different aspects of MHD, including MHD turbulence,

other phenomena like heating, high correlation between v and b etc.

Now, the other two solutions which can be obtained from this equation,

k 2 2 2 2)2 2 Zk”z
W= (40D + (e o+ DY)~ 4cb s,

this is called the fast mode. And we also have

k k?
0= (cZ + b3) — j(c_g + b2)? — 4c2b? k—“z

called the slow mode.
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Now, it is true that when your equations are incompressible MHDs equation, that means,
all the velocity vector is solenoidal, all the k - v type of things are 0, because divergence

of v is equal to 0.

So, in this type of case you can simply understand that Alfvén mode is an incompressible
MHD mode because at this condition only one mode survives and that is the Alfvén mode.
That you can actually check. So, my suggestion will be to start directly from the linearized
equations and try to understand which thing should be changed if you have incompressible

MHD. So, actually you will see that this is somehow very easy to show that only one wave

mode will then be retained and should have a dispersion relation like (w? — kibg) = 0.

Then another point is that actually one can show, that the phase velocity of the slow mode
is actually less than or equal to the phase velocity of the Alfvén mode and that will be less

than equal to the phase velocity of the fast mode i.e., v_ < v, < v,.
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But before that let us do something very interesting. First of all, I said that if your set of

equations are of incompressible nature, then | said that just you can check and verify that

the only dispersion relation which you get is that of the Alfvén modes. But we can do

something very easily. We can just say that if we just take the dispersion relation of the

Alfvén mode which is w = w, = k; by, and then we simply write the expressions vy, vy,

and v, obtained from the matrix above, we have for vy, (w? — k;b3) v, = 0 and which

simply says that as (w? — kybg) is O then this equation will be true even when vy, is

nonzero.

Now, what happens for other two equations? So, for example, if you write those two

equations in a set of linear equations then you will see that it is
(w? = kfc? — k*b§)vyy — ki kycivy, = 0,
—k kyc2vyy + (w? — kEc?)vy, = 0.
Now, | am just checking how does it behave when w = kb,.
Now, if I just use this value for w, then I will simply get
—k%(ct + bg)vly —k kycivy, =0,

—ky kycZvy, — ki (c2 + b§)vy, = 0.
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So, I just eliminate v,,, from both these equations and after necessary cancellations, you

will have the relation, ctv,, = (c2 + b2)?v,,.

So, one possibility is of course, v,, is 0, the other possibility is c¢ = (c2 + b2)?. As c2

should be positive, then ¢2 = (c2 + b3).
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As vy, # 0, that simply gives us b2 = 0, and which is not possible, which simply violates

our main assumption that there is a magnetic field. Otherwise, this is no longer an MHD



fluid. So, this is impossible. So, v,, must be equal to 0. And similarly, you can show v,,,

is also O.

So, the only nonzero component of v is the x-component. And so, our v can be written as
v = {v, 0,0}, but our propagation vector is k = {0, k, k;}. So, we can simply write that
k - v = 0. So, the particle velocity is perpendicular to the wave propagation and that is the

definition of a transverse mode.

So, when you simply pluck at one point of a tense string and then release it, then basically
the string vibrates and the vibration is propagating in the direction perpendicular to the
particles’ vibration. So, this is nothing but a classical example of our transverse wave. And
you all know that light, heat, all these electromagnetic waves in vacuum are always
perfectly transverse waves. So, transverse simply means that the particle velocity and the
propagation direction they are mutually perpendicular. Now, simply once again, so as this
is the case k - v, so in our case v is parallel to x, and so the Fourier component of v is also
parallel to x. And then we can actually get k - v, = 0. So, it simply says, this is nothing
but the incompressibility condition. So, this wave mode is also incompressible. And that
is why even in this wave mode appears as a totally decoupled mode from the other two

modes in the compressible MHD, the nature of this mode is in incompressible in nature.
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Now, my question is, what about the dispersive nature of Alfvén wave? Well, the

- =
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—

dispersion relation is w = k - v, and here the question is how to define the phase velocity?



So, it’s w by the wave vector parallel to the direction of propagation (k;), and that is

exactly the proper definition of phase velocity and that is simply given here just by v,.
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On the other hand, if you do group velocity, it is nothing but v, = |V,w|. And if you do

this one rightly, you will see that is also equal to v,.
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So, v, is equal to v, and they are they are independent of k. So, this is a non-dispersive

. . w
mode. Non-dispersive mode as v, = Pl |Viw|.
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So, this is the brief story about the Alfvén mode. What about the other two?
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So, there are two other modes, one is called the fast mode, and other, the slow mode. So,

the fast mode has the dispersion relation

k 2 2 2 232 2 zkll2
a)+=ﬁ (c2+b5)+ [(c2+Db§) —4csb0ﬁ.

2
So, just try to understand the factor, J (c2 + b2)2 — 4c2b? % can have a maximum value

2
2 ki

07z is minimum, because this is getting subtracted and this term is minimum

when 4c2b

when k, is equal to 0.
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So, that means, when the propagation is perpendicular to b,. That means, the propagation

vector has no parallel component.

Now, so that is the maximum case and the minimum case is when k; is almost equal to k.
And then what happens? The factor inside the second square root is |c2 — bZ|. Now, we

do not know which one is greater.

So, if your B is greater than 1, then ¢, > by, so it should be then this one should be equal
to (cZ2 — b32). And if we are considering the case of a low g, then this one will be simply
(b§ — c2).



(Refer Slide Time: 43:12)

—F-.g—si—- 0)+ = K L s
mode’ JZ \l CCS t b, ) +\J(C:+b:')l— 4(‘;‘&, vk
((—ad- wods) s

K
e ——
Max. = C;'J—L:'
= |

% fkau :?U—c‘ = Wt

— =V, W
x| Q@Z’E@@)
v v
Mim

Max.

(.C;L'Hoom) -~ o ﬁfhah %
[ - =—A-} b
So, in the first case, what happens?
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So, phase speed for the maximum speed is given by v, = % =/cZ + bZ.
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Now, what will be the minimum phase speed?
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For high g, we have v, = c,. So, for high g, the fast mode reduces to nothing but an

acoustic mode, sound wave mode.

And for low B the fast mode reduces to an Alfvén mode. And that is actually when its

propagation is parallel (error in lecture) to b, because this is minimum when k| is almost

equal to the k.
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So, that means, the propagation vector is almost aligned with respect to the b,. But this is

also the transverse mode.

So, you see that the minimum phase speed corresponds to the sound speed for high g and
corresponds to Alfvén speed for low . I must also mention that b, is also the Alfvén speed
forusi.e., by = v,.
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Now what is the story for slow mode? So, for slow modes what happens? So,

k ke
0= (c2+bd) — j(cg +b2)? — 4c2b? k—';

Proceeding as above, we obtain % = ¢, for by > ¢, and % = b, for c; > b,.



So, if your system has a high g, the fast mode becomes acoustic, but the slow mode
becomes Alfvénic. When your system has a low g, the fast mode becomes Alfvénic, the
slow mode becomes acoustic. Now, my question to you to think, are fast and slow modes
dispersive? And actually if you think very deeply you will see that none of these three

modes are dispersive in nature in general.

So, here actually at this point | am just putting an end to the discussion of the waves in
MHD. And it is a very vast chapter, there are several books which are only written on the

waves in MHD. So, this is a vast subject of research and analysis.

So, now, in the context of space and astrophysics these wave modes are very very
important because this leads to several phenomena and this controls different type of
behavior of a MHD fluid. And that is why very good knowledge, even if not much
mathematical knowledge, but at least a very good knowledge about those three modes are

very much important.

So, one thing to be said that unlike the incompressible Alfvén mode the last two modes
which are the fast mode and the slow mode, they are only appearing when your system is
compressible, when you are talking about compressible MHD. So, that is why these two
modes are known as sonic modes and they are called fast magnetosonic mode and slow

magnetosonic mode.

Since, there are the two contributions in general, one is from magnetic field another is from
the acoustic wave, that is why they are called fast and slow magnetosonic or

magnetoacoustic modes, all these vocabularies are there.

So, from the next lecture we will start discussing two or three interesting applications of
MHD and then I will pass to the discussion of turbulence as well.

Thank you very much.



