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Prof. Supratik Banerjee
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Indian Institute of Technology, Kanpur

Lecture - 46
Inviscid Invariants in MHD

Hello, and welcome to another session of Introduction to Astrophysical Fluids. In this lecture,
we will continue our discussion on the different type of properties or features of MHD fluids
and specifically we will discuss the Inviscid Invariants of several fluid variables or fluid

quantities in the case of MHD.

In general, we will assume that the MHD fluid is compressible, but it has a simplistic closure
for example, either isothermal or polytropic. So, for most of the cases we will use the

polytropic closure.
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So, first we start with the very fundamental inviscid invariant or the conservation of mass. So,
when we talk about first of all inviscid invariants it simply says that we will try to see that

which quantities are conserved in time if the fluid has negligible viscous effects.

So, for our case it will just simply give that 9 tends to O, I mean the viscosity and the
magnetic diffusivity also tends to 0. So, under this condition we will investigate which

quantities are conserved. Now once again when we are talking about conservation as we



discussed in one of the previous lectures while discussing the inviscid invariants for normal

hydrodynamic fluid, we said that for the invariants of the extensive quantities.

That in density corresponding to the extensive quantity should follow a specific | mean the
evolution of the density should follow such type of equation which are known as the
conservative forms. So, if you really remember then the condition for certain extensive
quantity v to be conserved to be an inviscid invariant if we write v is equal to some v drt |

mean | can also write like this.

So, this is a vector or just | am taking scalar, for simplicity. So, then v, is the density of that
quantity v then in order that v is an inviscid invariant we have to have this type of equation
plus divergence of some flux, and that flux simply says that it should be exactly equal to
either the density v, times the fluid velocity v or some other quantity which is not exactly

equal to v, but some other quantity times v.

So, we sometimes call the current associated with that quantity. So, for example, for mass we

just simply identify p is the density of mass and pv is the mass current. So, this type of things

is there. So, that this a simple form that is the % of the that density v, should be equal to 0.
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So, in that case, you can simply say that % will be equal to minus divergence of that current
and just writing current instead of flux because flux can be misleading and if | can write then

simply % is equal to the divergence of some quantity then actually we are done.

But it is preferable, of course, as you understand that the divergence should be multiplied
with some quantity some field quantity with which it is then easy to use the Gauss’s
divergence theorem that means finally, we have to prove that the volume integral of this thing
is 0 and for that if you really understand the Gauss’s divergence theorem this is nothing, but

the closed surface integral of this current dot 7nids.

If that current is proportional to the velocity or in MHD we will see that it can also be

magnetic field. So, that in the surface enclosing that volume at every point of the surface that
B+ Ads or b - Ads should vanish then you can actually justify that this divergence will lead to

a vanishing contribution to the %fvcdr and thereby confirming the conservation.

So, just following the same ethics | mean we will finally, try to show different type of
conservation principles. So, let me first it is all those things | will come into that and this part

I will do actually very thoroughly. So, that you can actually know how to do that.
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So, the first one is once again so, we start by discussing the inviscid invariants of mass, and

this is evident from the basic continuity equation which simply says that %+V- (pv) is



equal to 0. So, then %fpdr which is the total mass, of course, then % will enter inside the

integration that you know from mathematics,
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and that becomes a% inside this integration and then this % by continuity equation is nothing

but =V - (p®). So, [V - (pP) dt is nothing, but equal to closed surface integral p@. ds right.
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Now, pv.ds at the surface if you remember sorry what | said that at the surface v. ds should

vanish because this is the extreme surface. If ¥.ds is non zero that means we have some



component of the velocity in this direction and it simply says that this cannot be the surface
or the boundary surface enclosing the whole fluid because it simply says that the fluid can

come out or can go in right.

So, then this is no longer a boundary surface so, in order that this is a boundary surface . ds
simply should be 0. So, we just use that and we will get finally, this is equal to 0, so, %fpdr

is equal to 0 and mass is conserved. Then we have another type of conservation principle and
that is a bit subtle and that is the momentum conservation which is trivially true for

hydrodynamic fluid here, there is a trick.

Because the momentum first of all this is a vector conservation so, we will somehow write
%fpfz’dr and that will be simply equal to if you do the calculation just by using the Navier-
Stokes’s equation including the low range force you will see that will give you divergence of

this quantity. and by using Gauss’s divergence law you can simply write minus closed

2 - =
1—E®21. 43, Now, the problem is that at this point you

surface integral [p(ﬁ@ﬁ) +pl + 2
2ug Ko

- 2 2
can say that this p(v®v) - ds would be 0, this pI - ds will also be 0, this Z%I - ds will also be
0

BQE

0, but not this — - ds.
Ko
So, the B;ﬁ- ds is not necessarily equal to 0. So, for that I am not going into the very detail of
0

this part so, you can see any standard book of magneto hydrodynamics here the problem is
described. So, this basically, causes the momentum linear momentum in MHD equations not
to be conserved. So, that is something we have to understand.

However, for hydrodynamic case this term 5®8 is no longer present, but it is true that you can

Ho

have this impression that if this is Bl;ﬁ causing problem then this p(v®v) can also cause
0

problem, but | mean fortunately this p(¥®v) does not cause any problem.
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Now, momentum conservation is not a guarantee in magneto hydrodynamics. | mean rather
in ideal magneto hydrodynamics because in this whole equation whole discussion we are
talking about inviscid invariants. So, the basic equations are the background equations. That
will simply be the equations of ideal MHD. So, | can then write this as ideal MHD.

Now, | am going very slowly to the most important conservation of magneto hydrodynamics
that is the conservation of total energy. Now, we also discussed the conservation of total
energy may be in the case of compressible fluids, but not really in detail here 1 will just try to
do it at least once thoroughly step by step. So, that you can have the idea not only for total
energy, but also for other type of quantities, how to prove or how to investigate whether the

quantity is an inviscid invariant or not.

So, we take a barotropic MHD fluid which is a bit more general than polytropic so, barotropic

simply says that the fluid pressure is simply a function of p only fluid density.
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So, the total energy is given by this [ Edz and E is the volume density of energy, and for a
barotropic MHD fluid we will try to show that the total energy is conserved. Because | mean
conserved in the absence of any net viscosity or magnetic resistivity or magnetic diffusivity.
So, that is something very intuitive, but we now have to give the proper expression for the

total energy.

So, one we know that is the kinetic energy part and which is quite evident rho u square by 2
that is the kinetic energy density that is the magnetic energy density B square by 2 mu 0
minus there is another quantity which comes due to the compressibility of the fluid and for a

so, there is already an integration.

So, inside integration, the total energy density function and which will be then integrated over
dt. But this compressible energy or the compressible potential energy function is itself
derived from another integration if for knowing the functional form of that compressible

energy we have to use the corresponding closure.

Because we have p is equal to p(p) so, we have to know the exact functional dependence of

p on p, and then if we do from p, p, is some reference value for the density to some current

and | mean current means like the instantaneous p, and this integration is done on p d (%)
and the whole thing will then be again integrated on the whole space so, will be multiplied by

dt and this will be integrated.



So, these will be giving us total energy and people have already succeeded to show that this is

an inviscid invariant. Now in our lecture we will try to show that.
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Before showing this conservation or the invariants we discuss two small points one is that
what will be the compressible potential energy function for a simple isothermal fluid having
this very simple closure p is equal to some constant square times p and this constant is

nothing, but the sound speed square.

So, p is equal to CZp. So, for that case this one 2~ |s the Kkinetic energy density, this one — |s
the magnetic energy density now we have to do something like that — f:)p d (;) and this

d (%) is nothing, but —‘;—’2’. So, finally, that will be becoming fppop %. So, this p is nothing but

C?p.
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So, finally, this will become fp C§p . S0, p, p? will cancel one density and you have

I c? %”. So, finally, the functional form will be €2 In (pﬂ)
0 0
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That is exactly what we will use here, and for a polytropic case where p is equal to some

constant times p? then if you follow the same formula and it’s you to do now.
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So, do it yourself then you will see that — [ p d (%) is simply equal to y%l.

There should be a p multiplied. So, p is the density times you have to have some function e.

So, basically the whole thing should be written as pe.



Now, how to understand this so, p has a dimension of the velocity square times a density
because its like C2p and d (%) has a dimension of ( ) So, p times ( ) finally, gives you a

dimension of velocity square. So, it is simply this e part and because the whole thing has a

dimension of density times velocity square.

So, by this I have just detected the error in my form | mean writing. So, finally, I think this is
not a big problem. So, | am just writing once again so, p will be there. So, for polytropic case

where p is equal to k p¥ then this is the correct expression and actually e will be then

( pro ) and then pe will be S|mply( 1))
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Let me just write once again one thing lets p. That is the thing we use throughout. Now, we

2 2
have to check for polytropic case that [ [% 23_ 5o )] dt is conserved.
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So, as | just said that this —p f:op d (%) is often expressed as pe where e is the compressible
potential energy per unit mass. So, then we are done.

Now, once again, for isothermal case, we agree e is equal to CZIn (pﬁ) and in case you just
0

choose just for simplicity your p or the reference density is 1 then your [n(p,) is 0, and then

simply e is equal to CZ1n (p) that is exactly what we do when we talk about an isothermal
fluid.

p
p(y-1)

derive the step by step the conservation or the inviscid invariants of the total energy. So, as

And for polytropic case e is equal to So, here in this lecture what 1 will do? I will

2 2
you know that we have to show that E the total energy density is % + % + pe, and we have
0

to show that E dt is conserved in ideal MHD then we actually have to show that % [Edzt is

equal to O that we have to show.
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So, we start by doing or we have to show fZ—f dt is equal to 0. So, we start by different piece
2
of E. First one is this the kinetic energy term that is %(%). So, now % (v?) is nothing, but 2

2
times v - 8,v. Then | have another term which is 1’7c’)tp.

So, | am just writing the expression for p%, and that is —p(% - V)d,% — Vp + (J x B) and

we are not considering any dissipation. So, here we have just used this equation in case you
have forgotten that we have used this equation.
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| have another term which is 1’76t,o and % by continuity equation is nothing, but equal to —V -

(pv). So, finally, what you have is equal to
L = P S
=7- [—P(ﬁ-v)v—(U-Vp)+v-(]xB)—7V-(pv)]_

Now you see that this is nothing, but —/ - (% x B), and you know that for ideal MHD case,

this is equal to J - E.

Now, that part is solved. So, I can simply write now J - E for this part 7 - (] X §). Now, what

about these 2 this one % - (pl_} : V) % and this one "Z—ZV- (p¥) what to do with them.
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So, | mean what we can do? That we will simply try to understand that what this thing is so, |
mean | can do one simple thing that from this one v - (pTJ’-V) v, | can write like this —pv -

2

— 2 —
V(Z)- @ x®) || -=V-(pD). So, B- (¥ x &) that is 0 because 2 elements in a scalar
2 2

triple product are identical so, this is 0.
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So, if we now check the whole thing so, we have this J - E component we have this (B : Vp)

component and we have one divergence V - (p "2—217’) So, that is already a good thing. So, we

have some divergence. Then we go to the other expressions.
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So, first we have to take the magnetic energy and the evolution of the magnetic energy

density which gives this expression at( ) and here we have S|mplyui -d,B and this 0,

is nothing, but from ideal equation ideal MHD equation this is V x ( x B).

So, we can write in another compact form just by using a divergence. You can simply write

as B+ (V x E) simply and then you can write this is equal to _u_[ -(ExB)+E-(VxB)].

/\

So, you have —V - - (ExE) , Which you can simply identify as very popular pointing vector right,

and the next term simply becomes E-J. So, | have a —E - and simply see in previous

equation you have a E - J. So, already this is good that these two things will cancel each other

and we have one divergence so, nothing to worry just this part 9, ((y%)) can raise some

concern.

So, how to get rid of this term at( )) either we have to make it cancel by other term or it

can combine with other term to give a resultant divergence. So, for that finally, if we do



calculations so, that will be given by this at( a ) and for that the trick is | have to write

-0

(V_Ll)%[—v (p¥)]. This is a very small and elegant homework which you can do so, | just

write you try. So, you have this relation p is equal to kp? and you know 3—‘;. So, from that you

try to find Z—’;, and if you do that very carefully you will see this equation (y—Ln% [-V - (pD)].

If you further just decompose all these things, you will see that this equation will be simply

equal to —V - (ped) —pV-¥. So, this is also a very good homework please do that

homework.

Then you see that this has a divergence part so, we do not have any problem and this has a
—pV - B. So, it has a —pV - ¥ and the previous part had —(17 . V)p. So, finally, if they are added

you will simply see that we have now two terms other than the divergences.
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So, the combination —pV - ¥ — ('13- V) p would give us V - p%. So, we are done. So, this is also

pv?

. . a B? . . = [pv? >
a divergence. So, finally, > T+I+pe] will be simply equal to -V - [T+p +pe]v
0

plus pointing vector.
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So, once again finally, it is true that we have to | mean like certify or we have to ascertain

that we will do the integration over dr.

Now, as this [ +p +pe]v total part is multiplied with ¥, we do not have any problem

because v is multiplied with ds gives you 0 and what about this term (F X §). So, for that |
have to write actually is equal to — (¥ x B) x B. So, finally, then you have two types of terms

one term like # - ds which is vanishing and there will be another term B - ds.

That B -ds will also vanish otherwise the magnetic fields just gets out of the boundary
surface that means this is no longer a boundary surface. So, both for velocity lines of force,
and the magnetic lines of force both should be at best tangential to the surface of the
boundary. Otherwise, if there is no tangential component that means, something is coming
out or something is going in. So, this is no longer a boundary so, they should be 0 finally,

making the whole thing to be 0 and that finally, confirms the conservation of total energy.

Now you see in the case of magneto hydrodynamic fluid the total energy is consisting of 3
parts. Kinetic energy, magnetic energy and the compressible energy which is a kind of
potential energy, and we have seen that in the absence of n and v that means, the magnetic
diffusivity and the kinematic viscosity respectively the total energy of an MHD fluid is

conserved.



So, I will continue this discussion just concerning the other conservation laws.

Thank you.



