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Inviscid Invariants in MHD  

 

Hello, and welcome to another session of Introduction to Astrophysical Fluids. In this lecture, 

we will continue our discussion on the different type of properties or features of MHD fluids 

and specifically we will discuss the Inviscid Invariants of several fluid variables or fluid 

quantities in the case of MHD. 

In general, we will assume that the MHD fluid is compressible, but it has a simplistic closure 

for example, either isothermal or polytropic. So, for most of the cases we will use the 

polytropic closure. 
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So, first we start with the very fundamental inviscid invariant or the conservation of mass. So, 

when we talk about first of all inviscid invariants it simply says that we will try to see that 

which quantities are conserved in time if the fluid has negligible viscous effects. 

So, for our case it will just simply give that 𝜗 tends to 0, I mean the viscosity and the 

magnetic diffusivity also tends to 0. So, under this condition we will investigate which 

quantities are conserved. Now once again when we are talking about conservation as we 



discussed in one of the previous lectures while discussing the inviscid invariants for normal 

hydrodynamic fluid, we said that for the invariants of the extensive quantities. 

That in density corresponding to the extensive quantity should follow a specific I mean the 

evolution of the density should follow such type of equation which are known as the 

conservative forms. So, if you really remember then the condition for certain extensive 

quantity 𝑣 to be conserved to be an inviscid invariant if we write 𝑣 is equal to some 𝑣𝑐𝑑𝜏 I 

mean I can also write like this. 

So, this is a vector or just I am taking scalar, for simplicity. So, then 𝑣𝑐 is the density of that 

quantity 𝑣 then in order that 𝑣 is an inviscid invariant we have to have this type of equation 

plus divergence of some flux, and that flux simply says that it should be exactly equal to 

either the density 𝑣𝑐 times the fluid velocity 𝑣 or some other quantity which is not exactly 

equal to 𝑣𝑐, but some other quantity times 𝑣. 

So, we sometimes call the current associated with that quantity. So, for example, for mass we 

just simply identify 𝜌 is the density of mass and 𝜌𝑣⃗ is the mass current. So, this type of things 

is there. So, that this a simple form that is the 
𝑑

𝑑𝑡
 of the that density 𝑣𝑐 should be equal to 0. 
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So, in that case, you can simply say that 
𝑑𝑣𝑐

𝑑𝑡
 will be equal to minus divergence of that current 

and just writing current instead of flux because flux can be misleading and if I can write then 

simply 
𝑑𝑣𝑐

𝑑𝑡
 is equal to the divergence of some quantity then actually we are done.  

But it is preferable, of course, as you understand that the divergence should be multiplied 

with some quantity some field quantity with which it is then easy to use the Gauss’s 

divergence theorem that means finally, we have to prove that the volume integral of this thing 

is 0 and for that if you really understand the Gauss’s divergence theorem this is nothing, but 

the closed surface integral of this current dot 𝑛̂𝑑𝑠.  

If that current is proportional to the velocity or in MHD we will see that it can also be 

magnetic field. So, that in the surface enclosing that volume at every point of the surface that 

𝑣⃗⃗⃗ ∙ 𝑛̂𝑑𝑠 or 𝑏⃗⃗⃗ ∙ 𝑛̂𝑑𝑠 should vanish then you can actually justify that this divergence will lead to 

a vanishing contribution to the 
𝑑

𝑑𝑡
∫ 𝑣𝑐𝑑𝜏 and thereby confirming the conservation. 

So, just following the same ethics I mean we will finally, try to show different type of 

conservation principles. So, let me first it is all those things I will come into that and this part 

I will do actually very thoroughly. So, that you can actually know how to do that. 
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So, the first one is once again so, we start by discussing the inviscid invariants of mass, and 

this is evident from the basic continuity equation which simply says that 
𝑑𝜌

𝑑𝑡
+ ∇⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗) is 



equal to 0. So, then 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝜏 which is the total mass, of course, then 

𝑑

𝑑𝑡
 will enter inside the 

integration that you know from mathematics, 
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and that becomes a 
𝑑

𝑑𝑡
 inside this integration and then this 

𝑑𝜌

𝑑𝑡
 by continuity equation is nothing 

but −∇⃗⃗⃗ ∙ (𝜌𝑣⃗). So, ∫ ∇⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗) dτ is nothing, but equal to closed surface integral 𝜌𝑣⃗. 𝑑𝑠 right.  
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Now, 𝜌𝑣⃗. 𝑑𝑠 at the surface if you remember sorry what I said that at the surface 𝑣⃗⃗⃗. 𝑑𝑠⃗⃗ should 

vanish because this is the extreme surface. If 𝑣⃗⃗⃗. 𝑑𝑠⃗⃗ is non zero that means we have some 



component of the velocity in this direction and it simply says that this cannot be the surface 

or the boundary surface enclosing the whole fluid because it simply says that the fluid can 

come out or can go in right. 

So, then this is no longer a boundary surface so, in order that this is a boundary surface 𝑣⃗⃗⃗. 𝑑𝑠⃗⃗ 

simply should be 0. So, we just use that and we will get finally, this is equal to 0, so, 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝜏 

is equal to 0 and mass is conserved. Then we have another type of conservation principle and 

that is a bit subtle and that is the momentum conservation which is trivially true for 

hydrodynamic fluid here, there is a trick.  

Because the momentum first of all this is a vector conservation so, we will somehow write 

𝑑

𝑑𝑡
∫ 𝜌𝑣⃗⃗⃗𝑑𝜏 and that will be simply equal to if you do the calculation just by using the Navier-

Stokes’s equation including the low range force you will see that will give you divergence of 

this quantity. and by using Gauss’s divergence law you can simply write minus closed 

surface integral [𝜌(𝑣⃗⃗⃗⨂𝑣⃗⃗⃗) + 𝑝𝐼̿ +
𝐵2

2𝜇0
𝐼̿ −

𝐵⃗⃗⃗⨂𝐵⃗⃗⃗

𝜇0
] ∙ 𝑑𝑠⃗⃗. Now, the problem is that at this point you 

can say that this 𝜌(𝑣⃗⨂𝑣⃗) ∙ 𝑑𝑠 would be 0, this 𝑝𝐼 ̿ ∙ 𝑑𝑠 will also be 0, this 
𝐵2

2𝜇0
𝐼̿ ∙ 𝑑𝑠⃗⃗ will also be 

0, but not this 
𝐵⃗⃗⃗⨂𝐵⃗⃗⃗

𝜇0
∙ 𝑑𝑠⃗⃗.  

So, the 
𝐵⃗⃗⃗⨂𝐵⃗⃗⃗

𝜇0
∙ 𝑑𝑠⃗⃗ is not necessarily equal to 0. So, for that I am not going into the very detail of 

this part so, you can see any standard book of magneto hydrodynamics here the problem is 

described. So, this basically, causes the momentum linear momentum in MHD equations not 

to be conserved. So, that is something we have to understand.  

However, for hydrodynamic case this term 
𝐵⃗⃗⃗⨂𝐵⃗⃗⃗

𝜇0
 is no longer present, but it is true that you can 

have this impression that if this is 
𝐵⃗⃗⃗⨂𝐵⃗⃗⃗

𝜇0
 causing problem then this 𝜌(𝑣⃗⨂𝑣⃗) can also cause 

problem, but I mean fortunately this 𝜌(𝑣⃗⨂𝑣⃗) does not cause any problem. 
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Now, momentum conservation is not a guarantee in magneto hydrodynamics. I mean rather 

in ideal magneto hydrodynamics because in this whole equation whole discussion we are 

talking about inviscid invariants. So, the basic equations are the background equations. That 

will simply be the equations of ideal MHD. So, I can then write this as ideal MHD. 

Now, I am going very slowly to the most important conservation of magneto hydrodynamics 

that is the conservation of total energy. Now, we also discussed the conservation of total 

energy may be in the case of compressible fluids, but not really in detail here I will just try to 

do it at least once thoroughly step by step. So, that you can have the idea not only for total 

energy, but also for other type of quantities, how to prove or how to investigate whether the 

quantity is an inviscid invariant or not. 

So, we take a barotropic MHD fluid which is a bit more general than polytropic so, barotropic 

simply says that the fluid pressure is simply a function of 𝜌 only fluid density. 
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So, the total energy is given by this ∫ 𝐸𝑑𝜏 and 𝐸 is the volume density of energy, and for a 

barotropic MHD fluid we will try to show that the total energy is conserved. Because I mean 

conserved in the absence of any net viscosity or magnetic resistivity or magnetic diffusivity. 

So, that is something very intuitive, but we now have to give the proper expression for the 

total energy. 

So, one we know that is the kinetic energy part and which is quite evident rho u square by 2 

that is the kinetic energy density that is the magnetic energy density B square by 2 mu 0 

minus there is another quantity which comes due to the compressibility of the fluid and for a 

so, there is already an integration.  

So, inside integration, the total energy density function and which will be then integrated over 

𝑑𝜏. But this compressible energy or the compressible potential energy function is itself 

derived from another integration if for knowing the functional form of that compressible 

energy we have to use the corresponding closure. 

Because we have 𝑝 is equal to 𝑝(𝜌) so, we have to know the exact functional dependence of 

𝑝 on 𝜌, and then if we do from 𝜌
0
, 𝜌

0
 is some reference value for the density to some current 

and I mean current means like the instantaneous 𝜌, and this integration is done on 𝑝 𝑑 (
1

𝜌
), 

and the whole thing will then be again integrated on the whole space so, will be multiplied by 

𝑑𝜏 and this will be integrated. 



So, these will be giving us total energy and people have already succeeded to show that this is 

an inviscid invariant. Now in our lecture we will try to show that. 
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Before showing this conservation or the invariants we discuss two small points one is that 

what will be the compressible potential energy function for a simple isothermal fluid having 

this very simple closure 𝑝 is equal to some constant square times 𝜌 and this constant is 

nothing, but the sound speed square. 

So, 𝑝 is equal to 𝐶𝑠
2𝜌. So, for that case this one 

𝜌𝑣2

2
 is the kinetic energy density, this one 

𝐵2

2𝜇0
 is 

the magnetic energy density now we have to do something like that − ∫ 𝑝 𝑑 (
1

𝜌
)

𝜌

𝜌0
  and this 

𝑑 (
1

𝜌
) is nothing, but −

𝑑𝜌

𝜌2. So, finally, that will be becoming ∫ 𝑝 
𝑑𝜌

𝜌2

𝜌

𝜌0
. So, this 𝑝 is nothing but 

𝐶𝑠
2𝜌. 
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So, finally, this will become ∫ 𝐶𝑠
2𝜌 

𝑑𝜌

𝜌2

𝜌

𝜌0
. So, 𝜌, 𝜌2 will cancel one density and you have 

∫  𝐶𝑠
2  

𝑑𝜌

𝜌

𝜌

𝜌0
. So, finally, the functional form will be 𝐶𝑠

2 ln (
𝜌

𝜌0
).  
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That is exactly what we will use here, and for a polytropic case where 𝑝 is equal to some 

constant times 𝜌𝛾 then if you follow the same formula and it’s you to do now.  
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So, do it yourself then you will see that − ∫ 𝑝 𝑑 (
1

𝜌
) is simply equal to 

𝑝

𝛾−1
. 

There should be a 𝜌 multiplied. So, 𝜌 is the density times you have to have some function 𝑒. 

So, basically the whole thing should be written as 𝜌𝑒.  



Now, how to understand this so, 𝑝 has a dimension of the velocity square times a density 

because its like 𝐶𝑠
2𝜌 and 𝑑 (

1

𝜌
) has a dimension of (

1

𝜌
). So, 𝑝 times (

1

𝜌
) finally, gives you a 

dimension of velocity square. So, it is simply this 𝑒 part and because the whole thing has a 

dimension of density times velocity square. 

So, by this I have just detected the error in my form I mean writing. So, finally, I think this is 

not a big problem. So, I am just writing once again so, 𝜌 will be there. So, for polytropic case 

where 𝑝 is equal to 𝑘 𝜌𝛾 then this is the correct expression and actually 𝑒 will be then 

(
𝑝

𝜌(𝛾−1)
) and then 𝜌𝑒 will be simply (

𝑝

(𝛾−1)
). 
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Let me just write once again one thing lets 𝑝. That is the thing we use throughout. Now, we 

have to check for polytropic case that ∫[
𝜌𝑣2

2
+

𝐵2

2𝜇0
+

𝑝

(𝛾−1)
] 𝑑𝜏 is conserved. 
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So, as I just said that this −𝜌 ∫ 𝑝 𝑑 (
1

𝜌
)

𝜌

𝜌0
 is often expressed as 𝜌𝑒 where 𝑒 is the compressible 

potential energy per unit mass. So, then we are done.  

Now, once again, for isothermal case, we agree 𝑒 is equal to 𝐶𝑠
2 ln (

𝜌

𝜌0
) and in case you just 

choose just for simplicity your 𝜌
0
 or the reference density is 1 then your 𝑙𝑛(𝜌0) is 0, and then 

simply 𝑒 is equal to 𝐶𝑠
2 ln (𝜌) that is exactly what we do when we talk about an isothermal 

fluid. 

And for polytropic case 𝑒 is equal to 
𝑝

𝜌(𝛾−1)
. So, here in this lecture what I will do? I will 

derive the step by step the conservation or the inviscid invariants of the total energy. So, as 

you know that we have to show that 𝐸 the total energy density is 
𝜌𝑣2

2
+

𝐵2

2𝜇0
+ 𝜌𝑒, and we have 

to show that 𝐸 𝑑𝜏 is conserved in ideal MHD then we actually have to show that 
𝑑

𝑑𝑡
∫ 𝐸 𝑑𝜏  is 

equal to 0 that we have to show. 
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So, we start by doing or we have to show ∫
𝜕𝐸

𝜕𝑡
 𝑑𝜏  is equal to 0. So, we start by different piece 

of 𝐸. First one is this the kinetic energy term that is 
𝑑

𝑑𝑡
(

𝜌𝑣2

2
). So, now 

𝑑

𝑑𝑡
(𝑣2) is nothing, but 2 

times 𝑣⃗⃗⃗ ∙ 𝜕𝑡𝑣⃗⃗⃗. Then I have another term which is 
𝑣2

2
𝜕𝑡𝜌. 

So, I am just writing the expression for 𝜌
𝜕𝑣

𝜕𝑡
,  and that is −𝜌(𝑣⃗ ∙ ∇⃗⃗⃗)𝜕𝑡𝑣⃗ − ∇⃗⃗⃗𝑝 + (𝐽 × 𝐵⃗⃗) and 

we are not considering any dissipation. So, here we have just used this equation in case you 

have forgotten that we have used this equation. 
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I have another term which is 
𝑣2

2
𝜕𝑡𝜌 and 

𝜕𝜌

𝜕𝑡
 by continuity equation is nothing, but equal to −∇⃗⃗⃗ ∙

(𝜌𝑣⃗). So, finally, what you have is equal to  

= 𝑣⃗ ∙ [−𝜌(𝑣⃗ ∙ ∇⃗⃗⃗)𝑣⃗ − (𝑣⃗ ∙ ∇⃗⃗⃗𝑝) + 𝑣⃗ ∙ (𝐽 × 𝐵⃗⃗) −
𝑣2

2
∇⃗⃗⃗ ∙ (𝜌𝑣⃗)]. 

Now you see that this is nothing, but −𝐽 ∙ (𝑣⃗ × 𝐵⃗⃗), and you know that for ideal MHD case, 

this is equal to 𝐽⃗ ∙ 𝐸⃗⃗⃗. 

Now, that part is solved. So, I can simply write now 𝐽⃗ ∙ 𝐸⃗⃗⃗ for this part 𝑣⃗⃗⃗ ∙ (𝐽⃗ × 𝐵⃗⃗⃗). Now, what 

about these 2 this one 𝑣⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝑣⃗⃗⃗ and this one 
𝑣2

2
∇⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗) what to do with them. 
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So, I mean what we can do? That we will simply try to understand that what this thing is so, I 

mean I can do one simple thing that from this one 𝑣⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝑣⃗⃗⃗, I can write like this −𝜌𝑣⃗ ∙

[(∇⃗⃗⃗ (
𝑣2

2
) − (𝑣⃗ × 𝜔⃗⃗⃗))] −

𝑣2

2
∇⃗⃗⃗ ∙ (𝜌𝑣⃗). So, 𝑣⃗⃗⃗ ∙ (𝑣⃗⃗⃗ × 𝜔⃗⃗⃗⃗) that is 0 because 2 elements in a scalar 

triple product are identical so, this is 0. 
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So, we finally, have 𝐽⃗ ∙ 𝐸⃗⃗⃗ − (𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗𝑝) − [𝜌𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗ (
𝑣2

2
) +

𝑣2

2
∇⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗)]. 



So, if we now check the whole thing so, we have this 𝐽⃗ ∙ 𝐸⃗⃗⃗ component we have this (𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗𝑝) 

component and we have one divergence ∇⃗⃗⃗ ∙ (𝜌
𝑣2

2
𝑣⃗⃗⃗). So, that is already a good thing. So, we 

have some divergence. Then we go to the other expressions. 
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So, first we have to take the magnetic energy and the evolution of the magnetic energy 

density which gives this expression 𝜕𝑡 (
𝐵2

2𝜇0
) and here we have simply 

1

𝜇0
𝐵⃗⃗ ∙ 𝜕𝑡𝐵⃗⃗ and this 𝜕𝑡 𝐵⃗⃗⃗ 

is nothing, but from ideal equation ideal MHD equation this is ∇⃗⃗⃗ × (𝑣⃗⃗ × 𝐵⃗⃗⃗).  

So, we can write in another compact form just by using a divergence. You can simply write 

as B⃗⃗⃗ ∙ (∇⃗⃗⃗ × 𝐸⃗⃗⃗) simply and then you can write this is equal to −
1

𝜇0
[∇⃗⃗⃗ ∙ (𝐸⃗⃗⃗ × 𝐵⃗⃗⃗) + 𝐸⃗⃗ ∙ (∇⃗⃗⃗ × 𝐵⃗⃗⃗)]. 

So, you have −∇⃗⃗⃗ ∙
(𝐸⃗⃗⃗×𝐵⃗⃗⃗)

𝜇0
, which you can simply identify as very popular pointing vector right, 

and the next term simply becomes 𝐸⃗⃗ ∙ 𝐽. So, I have a −𝐸⃗⃗⃗ ∙ 𝐽 and simply see in previous 

equation you have a 𝐸⃗⃗ ∙ 𝐽. So, already this is good that these two things will cancel each other 

and we have one divergence so, nothing to worry just this part 𝜕𝑡 (
𝑝

(𝛾−1)
) can raise some 

concern. 

So, how to get rid of this term 𝜕𝑡 (
𝑝

(𝛾−1)
) either we have to make it cancel by other term or it 

can combine with other term to give a resultant divergence. So, for that finally, if we do 



calculations so, that will be given by this 𝜕𝑡 (
𝑝

(𝛾−1)
)  and for that the trick is I have to write 

𝛾

(𝛾−1)

𝑝

𝜌
[−∇⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗)]. This is a very small and elegant homework which you can do so, I just 

write you try. So, you have this relation 𝑝 is equal to 𝑘𝜌𝛾 and you know 
𝜕𝜌

𝜕𝑡
. So, from that you 

try to find 
𝜕𝜌

𝜕𝑡
, and if you do that very carefully you will see this equation 

𝛾

(𝛾−1)

𝑝

𝜌
[−∇⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗)]. 

If you further just decompose all these things, you will see that this equation will be simply 

equal to −∇⃗⃗⃗ ∙ (𝜌𝑒𝑣⃗) − 𝑝∇⃗⃗⃗ ∙ 𝑣⃗. So, this is also a very good homework please do that 

homework.  

Then you see that this has a divergence part so, we do not have any problem and this has a 

−𝑝∇⃗⃗⃗ ∙ 𝑣⃗⃗⃗. So, it has a −𝑝∇⃗⃗⃗ ∙ 𝑣⃗⃗⃗ and the previous part had −(𝑣⃗ ∙ ∇⃗⃗⃗)𝑝. So, finally, if they are added 

you will simply see that we have now two terms other than the divergences. 
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So, the combination −𝑝∇⃗⃗⃗ ∙ 𝑣⃗⃗⃗ − (𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝑝 would give us ∇⃗⃗⃗ ∙ 𝑝𝑣⃗⃗⃗. So, we are done. So, this is also 

a divergence. So, finally, 
𝜕

𝜕𝑡
[

𝜌𝑣2

2
+

𝐵2

2𝜇0
+ 𝜌𝑒] will be simply equal to −∇⃗⃗⃗ ∙ [

𝜌𝑣2

2
+ 𝑝 + 𝜌𝑒] 𝑣⃗ 

plus pointing vector. 
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So, once again finally, it is true that we have to I mean like certify or we have to ascertain 

that we will do the integration over 𝑑𝜏. 

Now, as this [
𝜌𝑣2

2
+ 𝑝 + 𝜌𝑒] 𝑣⃗⃗⃗ total part is multiplied with 𝑣⃗⃗⃗, we do not have any problem 

because 𝑣⃗⃗⃗ is multiplied with 𝑑𝑠 gives you 0 and what about this term (𝐸⃗⃗⃗ × 𝐵⃗⃗⃗). So, for that I 

have to write actually is equal to −(𝑣⃗⃗ × 𝐵⃗⃗⃗) × 𝐵⃗⃗⃗. So, finally, then you have two types of terms 

one term like 𝑣⃗ ∙ 𝑑𝑠⃗⃗ which is vanishing and there will be another term 𝐵⃗⃗ ∙ 𝑑𝑠⃗⃗.  

That 𝐵⃗⃗ ∙ 𝑑𝑠⃗⃗ will also vanish otherwise the magnetic fields just gets out of the boundary 

surface that means this is no longer a boundary surface. So, both for velocity lines of force, 

and the magnetic lines of force both should be at best tangential to the surface of the 

boundary. Otherwise, if there is no tangential component that means, something is coming 

out or something is going in. So, this is no longer a boundary so, they should be 0 finally, 

making the whole thing to be 0 and that finally, confirms the conservation of total energy.  

Now you see in the case of magneto hydrodynamic fluid the total energy is consisting of 3 

parts. Kinetic energy, magnetic energy and the compressible energy which is a kind of 

potential energy, and we have seen that in the absence of 𝜂 and 𝜐 that means, the magnetic 

diffusivity and the kinematic viscosity respectively the total energy of an MHD fluid is 

conserved.  



So, I will continue this discussion just concerning the other conservation laws. 

Thank you. 


