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Hello, and welcome to another lecture session of Introduction to Astrophysical Fluids. In the 

last lecture, we qualitatively discussed how starting from the basic kinetic theory of a plasma 

we can reach to the fluid theory. 

First, we described that for each species for example, the ions, the electrons we can describe 

or rather we can consider separate fluids so, then the plasma can be considered as a multi 

fluid. It is a combination of an ionic fluid; it is electronic fluid and if the plasma is very 

weakly ionized then neutral fluids; the neutral fluid that will also come into play. 

Now, we also said that finally, if we are interested beyond a certain scale both in length and I 

mean both in space and time then simply the total I mean the charge quasi neutrality that is 

actually satisfied almost at each point of the flow field, so, very locally and then we can 

describe the plasma as just one single fluid, which is neither the pure ionic fluid nor the pure 

electronic fluid, but it is a combination of the two fluids. 

This is known as popularly the mono fluid model of plasma or magneto hydrodynamics 

which is also sometimes called with its abbreviation MHD. 

So, in today’s discussion we will mostly be trying to throw some light on different interesting 

properties of such MHD fluids. 
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So, as we discussed last time that MHD is a mono fluid theory of plasma and it is valid only 

when we are interested beyond a certain length scale an ion inertial length. Of course, in 

terms of time scale you can also like estimate sometime corresponding to that. 

So, that to be very honest I mean roughly speaking if we are interested in the time scales 

much greater than the inverse of the ion or electronic gyro frequency or the ion or electronic 

how to say that the gyro frequency or the reciprocal of the ion cyclotronic plasma frequency 

then where most of the cases it is almost guaranteed that we are in the MHD region. 

So, roughly what happens in the MHD region is that we are in such a long length scale or 

time scale that even for our time scales or length scales the ions are moving considerably, and 

electrons are enslaved by the ion flow. As we described last time that if we simply with an 

enormous amount of patience if we study the movements of the clock’s hands, then it is true 

that it is possible to even see that the hours hand is also moving. 

But, in most of the cases what happens that we do not have enough patience. So, we can only 

see the seconds hand and sometimes minutes hand, but hours hand to move we really have to 

wait for long time, and, if we have this level of patience here analogically then ions are also 

found to move and when ions are moved electrons just make a background and it simply 

follows the ions. 



So, for an MHD fluid as we discussed that the inertia of the fluid is mainly governed by the 

ions, and that is why for the MHD fluid the fluid velocity is almost equal to the ion fluid 

velocity that was also evident from the formula. So, the mono fluid velocity which is nothing 

but, has velocity of the center of mass of the two fluids – electronic fluids and ionic fluids. 

So, here when we are just talking this mono fluid model for the simplicity, we simply 

consider that our plasma is almost perfectly ionized and which is the case when this mono 

fluid model actually comes to be appropriate and then you have ions and electrons. So, the 

number of neutral atoms is negligibly smalls. 

So, the 𝒗 which is the MHD fluid velocity will be simply very close to the ionic fluid 

velocity, but the current on the other hand which is given by 𝑱 is nothing, but is equal to 

𝑛𝑒(𝑣⃗𝑖 − 𝑣⃗𝑒), 𝑛 is the number density of both electrons and ions, 𝑒 is the electronic charge. 
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So, whereas, for this case if you remember that simply 𝒗 was 
𝑚𝑖𝑣⃗⃗⃗𝑖+𝑚𝑒 𝑣⃗⃗⃗𝑒
𝑚𝑖+𝑚𝑒

. 
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Now, since 
𝑚𝑒

𝑚𝑖
 is negligibly small and we considered that both 𝒗𝒊 and 𝒗𝒆 are of roughly of the 

same order, then we can neglect the whole thing with respect to 𝒗𝒊 and also, we can neglect 

this factor in front of 1 and that is why we finally, have 𝒗 almost equal to 𝒗𝒊. Now, for the 

current this is no longer true this type of the electronic contribution does not work here and 

we have to take the contribution of both these velocities. 

Now, if you remember the four governing equations of magneto hydrodynamics as we said 

they are simply the continuity equation, 2nd is the momentum evolution equation on here, 

and the induction equation. 

𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌𝑣⃗⃗⃗) = 0                                                (i) 

𝜕𝑣⃗⃗⃗

𝜕𝑡
+ (𝑣⃗⃗⃗. ∇⃗⃗⃗) 𝑣⃗⃗⃗ =

∇⃗⃗⃗𝑝

𝜌
+

𝐽⃗×𝐵⃗⃗⃗

𝜌
+ 𝜗∇2𝑣⃗⃗⃗− ∇⃗⃗⃗𝜑             (ii) 

𝜕𝐵⃗⃗⃗

𝜕𝑡
= ∇⃗⃗⃗ × (𝑣⃗⃗⃗ × 𝐵⃗⃗⃗)+ 𝜂∇2𝐵⃗⃗⃗                                    (iii) 

So, this term 𝑣⃗⃗⃗ × 𝐵⃗⃗⃗ comes from the if you remember the generalized Ohm’s law and this 

𝜂∇2𝐵⃗⃗ is something analogous to the dissipation terms for the magnetic fields, and it is called 

the magnetic diffusivity. 

Finally, we have to close the equation and since we are just again for the sake of simplicity, 

we are not considering the energy equation, we simply close the equation at this level just by 



saying that our fluid is poly tropic, even simpler than saying it to be barotropic. So, this is a 

simple version of barotropic where 𝑝 has this specific form 𝑘𝜌𝛾. 

Of course, once again 𝛾 can be anything like I mean real quantity, 𝛾 can be positive, negative, 

but just writing this form does not guarantee that the system is adiabatic. This is a general 

polytropic system, this 𝛾 can be equal to minus 2, for example, that is also possible. 
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So, with these equations we can start studying the features of different properties of MHD 

equations. Now, just before that let me just point out one thing that where this magnetic 

diffusivity term 𝜂∇2𝐵⃗⃗ with 𝜂 and the fluid viscosity term is negligible, then I mean simply 

this 𝜂∇2𝐵⃗⃗ and they can be ignored and we then talk of the regime which is known as ideal 

magneto hydrodynamics. 

The good news is that in most of the cases of astrophysics, they had a strong exception, but in 

most cases of astrophysics and space physics I mean large number of phenomena can be 

explained just by using ideal MHD. Why? That I will be coming during some next 

discussion. 
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So, one specific feature of MHD equation is the type of Lorentz force in the force equation. 

So, that equation is absent in general for neutral fluids. So, neutral fluids are not charged. So, 

they do not have this Lorentz force in the force equation. So, Lorentz force is nothing, but 

𝐽⃗×𝐵⃗⃗⃗

𝜌
. So, 𝐽⃗ is simply equal to 𝑛𝑒(𝑣⃗𝑖 − 𝑣⃗𝑒), but again if you remember Maxwell amperes law, 

what is 𝑱? 
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So, 𝑱 can also be written as ∇⃗⃗⃗ × 𝐵⃗⃗⃗ is equal to 𝜇0𝐽⃗ + 𝜀0𝜇0
𝜕𝐸⃗⃗⃗

𝜕𝑡
. Now, this 𝜀0

𝜕𝐸⃗⃗⃗

𝜕𝑡
 is called the 

displacement term and this term 𝜀0
𝜕𝐸⃗⃗⃗

𝜕𝑡
 actually can be neglected with respect to this term 𝜇0𝐽⃗. 

This is neglected you can show by order analysis if the plasma is non-relativistic in nature, 

and we are considering here non relativistic plasmas. So, for our case ∇⃗⃗⃗ × 𝐵⃗⃗⃗ is simply equal 

to 𝜇0𝐽⃗. 

So, then we can write simply 𝑱 as 
1

𝜇0
∇⃗⃗⃗ × 𝐵⃗⃗⃗. So, this total thing comes then 

1

𝜇0𝜌
(∇⃗⃗⃗ × 𝐵⃗⃗⃗)× 𝐵⃗⃗⃗ 

and if you know this special vector identity this is nothing, but 
1

𝜇0𝜌
[−∇⃗⃗⃗ (

𝐵2

2
)+ (𝐵⃗⃗⃗ ∙ ∇⃗⃗⃗) B⃗⃗⃗]. You 

see sometimes we will see in a short while that will be very important to understand two 

different aspects of Lorentz force. 

Now, sometimes we say that why this is really useful to remember the vector identities or 

have a good grip over the vector identities both in vector algebra and vector calculus, the 

reason is that if you write you are turn in this expression you do not understand what is the 

physical significance, but once you ride in this expression you can actually see the effects are 

prominent then in this writing next. 

So, that is why it is always good to have a good grip over the different type of vector 

identities and it is good to make a habit to write different expressions using vector identities 

like we are doing here. 
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So, once I write in this form the whole thing you now see that I have 
1

𝜇0𝜌
[−∇⃗⃗⃗ (

𝐵2

2
)+

(𝐵⃗⃗⃗ ∙ ∇⃗⃗⃗) B⃗⃗⃗]. Now, 𝜇0 can be taken inside. So, it will be −∇⃗⃗⃗ (
𝐵2

2𝜇0𝜌
) and what does that look 

like? 
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It simply looks that this 
𝐵2

2𝜇0𝜌
 is behaving like a pressure type of quantity which we call 

sometimes the magnetic pressure. 
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In several literature you can see 
𝐵2

2𝜇0𝜌
 this is nothing, but 𝑝𝑀, they use this symbol. 
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I am using here just 𝑝𝐵. So, this is a pressure term. So, in the total equation you will then 

have two terms – one is like this 
∇⃗⃗⃗𝑝𝐵
𝜌

 and another will be like this 
(𝐵⃗⃗⃗∙∇⃗⃗⃗)B⃗⃗⃗

𝜇0𝜌
 . So, the total pressure 

will be 𝑝 + 𝑝𝐵, it is an effective pressure. 

(Refer Slide Time: 15:35) 

 



So, you see that this writing style gives us several significances of this whole expressions of 

this one 
∇⃗⃗⃗𝑝𝐵
𝜌

 is like a pressure and we write this 
(𝐵⃗⃗⃗∙∇⃗⃗⃗)B⃗⃗⃗

𝜇0𝜌
 and this one what is this? This one 

(𝐵⃗⃗⃗∙∇⃗⃗⃗)B⃗⃗⃗

𝜇0𝜌
 

is known as tension and why this is known as magnetic tension that we will be coming in a 

few minutes. 
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But, before that now, let us try to understand that in MHD equation we have two 

contributions from pressure type of thing. Of course, there one contribution can be coming 

which is I mean can come if we write this advective term (𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝑣⃗⃗⃗ in terms of ∇⃗⃗⃗ (
𝑣2

2
) and 

𝑣⃗ × 𝜔⃗⃗⃗ which we wrote in the case where we were studying the effect of rotation. 
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Here we will not write that simply because we know what is the meaning of this (𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝑣⃗⃗⃗ and 

to be very honest, we have reduced this term (∇⃗⃗⃗ × 𝐵⃗⃗⃗)× 𝐵⃗⃗⃗ because in the equation we did not 

have any other terms like this, but (𝐵⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝐵⃗⃗⃗ has a term which is identical to this and that is 

(𝐵⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝐵⃗⃗⃗. So, we do not have to rewrite (𝑣⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝑣⃗⃗⃗ in terms of ∇⃗⃗⃗ (
𝑣2

2
) and 𝑣⃗ × 𝜔⃗⃗⃗, that we do not 

need. 

So, in an MHD plasma the pressure consists mainly of two type of terms – one is 𝑝 the 

normal pressure another is 
𝐵2

2𝜇0
. One simple point to make here this 

𝐵2

2𝜇0
 is also equal to the 

magnetic energy density, in an electromagnetic field if you remember. So, these two things 

now can act together on the MHD fluid and one can be greater than the other, one can be less 

than the other they can have different type of interplay. 

According to the relative importance of one with respect to the other and how to measure 

that? A quantitative measure of that is given by the so-called 𝛽 parameter of a plasma. So, 𝛽 

parameter is nothing, but the ratio of 𝑝 to 
𝐵2

2𝜇0
. So, 𝑝 is in the numerator and 

𝐵2

2𝜇0
 is at the 

denominator. So, finally, 𝛽 is nothing, but 𝑝 by 
𝐵2

2𝜇0
. So, it will be simply 

2𝜇0𝑝

𝐵2
. 

Now, we will see two specific cases one is the isothermal case where 𝛾 is equal to 1 and so, 𝑝 

is simply proportional to the density that case we have already encountered previously for a 



normal fluid. So, this conclusion remains unchanged. So, an isothermal fluid is nothing, but 𝑝 

is equal to 𝐶𝑠
2𝜌 and 𝛽 is equal to 

2𝐶𝑠
2

𝑏2
, where this small 𝒃 is introduced deliberately and this 

one actually much important for the physicists who work in space physics mostly. 

So, this 𝒃 is a magnetic field normalized to a velocity. So, just check that if 𝑩 is divided by 

√𝜇0𝜌, then it is just getting a dimension of a velocity. So, this one we just call as small 𝒃. So, 

our 𝛽 parameter will then simply equal to 
2𝐶𝑠

2

𝑏2
. Now, you can easily understand that if the 

temperature of the plasma increases then what happens? 𝐶𝑠
2
 increases. 

So, it’s 𝛽 value will increase. If on the other hand the magnetic field is very strong then 𝛽 

value decreases. Now, we consider another simple case which is the case of polytropic case. 

So, 𝛾 is equal to 𝛾polytropic, for example. So, then the pressure is no longer just proportional to 

𝜌, but pressure can be written as 
𝜌𝐶𝑠

2

𝛾
, but this 𝐶𝑠

2
 itself is a variable. 

So, just replacing the expression of 𝑝 in this expression we can write 𝛽 is equal to 
2𝐶𝑠

2

𝛾𝑏2
, and 

then you can easily see that both from these things we have the same conclusion that 

whenever you 𝐶𝑠 is very important that means, the system has a very high temperature, 𝛽 is 

high and if 𝑩 is weak then also 𝛽 is high. But on the other hand, if 𝑩 is strong then 𝛽 is low. 
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So, from this we now make two limits. So, 𝛽 tends to 0, what does it imply? So, 𝛽 tends to 0, 

can imply two situations, either of the two or both together that is first of all 𝐶𝑠 is tends to 0 

that means, the temperature is very, very low for the plasma. So, the plasma should be very 

cold and also there is another possibility is that 𝑩 should be infinitely large. 

So, it simply says that the plasma is subjected to a very strong magnetic field which is a 

combination of an external field plus the internal field. So, the total resultant magnetic field is 

very strong and this type of plasma is known as cold and magnetized plasma. So, it is true 

that if the plasma is very, very cold and even if the magnetic field is not very strong simply 

then also it is good enough to have a 𝛽 value very close to 0. 

But, if we have just two conditions together which we called cold and magnetized plasma 

then we must have 𝛽 tends to 0. Now, on the other hand the diametrically opposite cases the 

𝛽 tending to infinity and that is the case of where you can easily see from here when 𝛽 can 

tends to infinity when the temperature is very, very strong. 

So, 𝛽 tends to infinity for an isothermal plasma simply says that the plasma is very, very hot. 

But still the plasma can be written using this isothermal closure because if you try to go into 

the detail, you can actually see that if a plasma is very, very hot, then in general there can be 

much more sophisticated closures. 

Now, for polytropic case if 𝛽 is tending to infinity, it simply says that this 𝐶𝑠 is a point to 

make actually. So, in normal literatures you can see that 𝛽 tends to infinity gives as the 

incompressible plasma, but just try to think. 

So, the thing is that first of all from this equation 
2𝐶𝑠

2

𝑏2
 you can have this idea that maybe when 

𝛽 tends to infinity it is simply makes 𝐶𝑠
2
 tending to infinity and that gives us something nearly 

the incompressible medium, but this is a bit typical because this is not possible this relation is 

only true for isothermal plasma, and from isothermal plasma it is not evident to go to the 

incompressible limit. 

On the other hand, from polytropic plasma one can go to the incompressible limit for 𝛾 tends 

to infinity very large value, but the problem is that the 𝛽 is then equal to 
2𝐶𝑠

2

𝛾𝑏2
. Now, it is true 

that 𝐶𝑠
2
 just tending to infinity and 𝛾 is also tending to infinity and actually 𝐶𝑠

2
 by 𝛾 which is 𝑝 

by 𝜌 is something which is finite for an incompressible flow. 
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So, to be very honest in my opinion it is a bit. So, according to the literature although I wrote 

here this incompressible thing maybe it is more appropriate just to say that it is hot and 

weakly magnetize plasma.  

But one thing is clear that when 𝛽 is very, very large then 𝐶𝑠 should be large and it should 

correspond to irrespective of 𝛾 high temperature and the same thing when the magnetic field 

is weak that means it will also correspond very high 𝛽. 

Now, try to coming to a very practical question. So, we know now 𝛽 value is important to 

know the nature of the plasma. So, now, try to calculate the plasma 𝛽 assuming 𝛾 almost 

equal to 
5

3
 for the solar wind at 1 astronomical unit. For that I suggest you to search over 

internet the typical values of different type of physical quantities so that you can calculate 𝐶𝑠
2
 

you have some idea about the magnetic field of solar wind at 1 astronomical unit. 

Then you calculate both for ions and electrons and check which one is larger and finally, the 

question is that for a plasma what should be the combined or the resultant 𝛽, how to do that? 

So, think all these questions and if you are blocked you can write me over forum and we can 

discuss. Thank you. 
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Now, coming to this question, so, we have already discussed about the magnetic pressure 

part, but I introduce this part (𝐵⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝐵⃗⃗⃗ which looks like an advective term, but in terms of the 

magnetic field only and this is known as the magnetic tension, why? 

So, just consider this red curve I mean it represents one line of force of the magnetic field. 

So, it is the magnetic line of force. Now, I am simply interested in this small segment and 

within the small segment, the tangential direction is along 𝒕 and this segment I call as 𝑑𝑠 and 

the radius of curvature is 𝑅𝑐 and O is the centre of curvature. 

Now, 𝑑𝑠 is nothing, but we all know √(𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2 there is no surprise and OM is 

the radius of curvature. 𝒏 is the unit vector which is acting radially inward from that line of 

force to the center of curvature. Now, I write (𝐵⃗⃗⃗ ∙ ∇⃗⃗⃗) 𝐵⃗⃗⃗ and try to analyze this, what is this? 

So, this is nothing, but the directional derivative of 𝑩 in the direction of 𝑩 itself and this is 

𝐵
𝜕

𝜕𝑠
 because 

𝜕

𝜕𝑠
 is the partial differentiation along this line of force. 

So, 𝑑𝑠 is simply the segment along this line of force. So, 𝐵
𝜕

𝜕𝑠
 which will be now acting on 𝑩 

and what is that 𝑩 for this 𝑑𝑠, this is the 𝑩 magnitude times 𝑡̂, this 𝑡̂ is the unit vector. So, the 

magnetic field is at every point of a magnetic line of force the magnetic field is just 

tangentially directed that is the definition. So, we write this in this 𝐵
𝜕

𝜕𝑠
(𝐵𝑡̂) form and then 

we expand as 𝐵 [
𝜕𝐵

𝜕𝑠
𝑡̂ +

𝜕𝑡̂

𝜕𝑠
𝐵]. 



Of course, here the unit vector changes its direction with time. So, that is why this term 
𝜕𝑡

𝜕𝑠
 is 

known nonzero and this term 𝐵
𝜕𝐵

𝜕𝑠
 is easy to analyze. So, 

𝜕

𝜕𝑠
(
𝐵2

2
) 𝑡̂ because. You can simply 

write this 𝐵
𝜕𝐵

𝜕𝑠
 in this form 

𝜕

𝜕𝑠
(
𝐵2

2
) and what about this term 

𝜕𝑡

𝜕𝑠
𝐵? This term just using simple 

vector algebra you can simply find that this term 
𝜕𝑡

𝜕𝑠
 is given by 

1

𝑅𝑐
𝑛̂. 

So, if this is the case then the whole thing will be 
𝐵2

𝑅𝑐
𝑛̂. So, this one 

𝜕

𝜕𝑠
(
𝐵2

2
) 𝑡̂ is the tension 

along 𝑩 because this is along the tangent direction, and this one 
𝐵2

𝑅𝑐
𝑛̂ we are calling tension 

perpendicular to 𝑩. So, if for example, the magnetic field intensity increases, then this tension 

will be increasing and thereby making a force so that the magnetic lines of force are well tied, 

just like a cord under attention and this one is much more interesting. 
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In the case, if you can see that you have the magnetic lines of force which are getting much 

more curved due to some additional matter or some increase in the magnetic field intensity 

and when it is getting curved then it’s radius of curvature decreases. So, radius of curvature 

now decreases this is now 𝑅𝑐
′ . 

When radius of curvature decreases this term 
𝐵2

𝑅𝑐
 increases and then it simply says that when it 

has this type of geometry then you have something net force which is acting in this direction. 

So, that means, whenever this tension, what does it do? Whenever this magnetic field gets 



deformed from its original position, it tries to bring it back to the original position. That is 

why it behaves like a tension. 
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So, that was all about the tension part. Now, coming to another interesting thing which is the 

frozen in field theorem for MHD. So, for ideal MHD we all can now remember from the last 

discussion that the Faraday’s law actually becomes 
𝜕𝐵⃗⃗

𝜕𝑡
= ∇⃗⃗⃗ × (𝑣⃗ × 𝐵⃗⃗) because the 𝜂∇2𝐵⃗⃗ is 

dropped. If we recall from our previous lectures when we were talking about the different 

properties of ideal fluids, then we talked about the Kelvin vorticity theorem. 
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And, we said that any vector field when it just satisfies something like 
𝜕𝐴⃗

𝜕𝑡
= ∇⃗⃗⃗ × (𝑣⃗ × 𝐴). 
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So, any vector field 𝑨 if it satisfies evolution equation like this 
𝜕𝐴⃗

𝜕𝑡
= ∇⃗⃗⃗ × (𝑣⃗ × 𝐴), where 𝒗 is 

the fluid velocity. 
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Then this quantity will have an associated flux which will simply be then 𝐴 ∙ 𝑑𝑠 which will 

be conserved along any surface inside the fluid and another way of writing this is 



𝑑

𝑑𝑡
∬𝐴 ∙ 𝑑𝑠 = 0. 

So, that is exactly what we have written over here that the field which is satisfying this magic 

equation is 𝑩, the magnetic field. 
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That is why 
𝑑

𝑑𝑡
∬𝐴 ∙ 𝑑𝑠 = 0, where we are just talking about the any surface which is made 

by the fluid elements and moves with the fluid. So, of course, if it is made by the fluid 

element so, it is a real surface which is containing the fluid elements. 

So, what is the meaning of this? That of course, this surface also changes its area with times. 

That is why I have written this 𝑺 as an explicit time dependence. Now, it simply says this is 

equal to 0 means that in ideal MHD the magnetic lines of force they are frozen in the plasma 

or the matter. 
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So, that is why whenever you take any arbitrary area in a fluid and then you just trace this 

area from here let us say now after sometime it is coming here or sometime let say it goes 

there. In both cases if you just calculate 𝐵⃗⃗ ∙ 𝑑𝑠 here or here you will always have the same 

value. 
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That simply says that because we are just following one surface made by the fluid elements, 

we are actually following a slice of matter. So, if we are keeping our target intact, then the 



flux is also intact. So, our target was just a slice of matter. So, it simply says that the 

magnetic field is frozen with the matter or with the plasma. 

I have a small question for you can we also say that the same thing for 𝑨, where 𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴? 

So, just then you have to derive the evolution equation for 𝑨 and check whether this satisfies 

this 
𝜕𝐴⃗

𝜕𝑡
= ∇⃗⃗⃗ × (𝑣⃗ × 𝐴) magic equation or not. This is typically very easy and you will see that 

𝑨 does not obey this or satisfy this type of solution equation. 
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So, before ending this discussion, let me just tell you some important notes. So, ∇⃗⃗⃗ × 𝐵⃗⃗ is 

always 0. So, if you just take a magnetic flux tube in an MHD fluid, then if you consider a 

volume of this, then the total magnetic flux through the whole surface which encloses that 

volume of the magnetic flux of tube also is 0, that is simply because of the Gauss’s 

divergence theorem. 
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So, because you just have to do this 𝑑𝜏 and that will be simply equal to close surface integral 

of 𝐵⃗⃗ ∙ 𝑛̂𝑑𝑠 is equal to 0. 

(Refer Slide Time: 39:30) 

 

Now, the direction of the area of this lateral surface is always perpendicular whereas the 

direction of the magnetic field at every point is the tangential. That is why the total flux 

vanishes at every point of the lateral surface. So, this is only nonzero at this surface and this 

surface. 
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So, that is why the magnetic flux entering through the cross-sectional surface of a magnetic 

flux tube exactly is equal to the flux which is coming out of the opposite cross-sectional 

surface of that same tube. 

So, magnetic flux across any cross-sectional surface of a magnetic flux tube is always 

constant. We do not need Kelvin vorticity theorem to be true that means, we do not need the 

magnetic field to satisfy the magic equation for that. It simply says that even if this is not true 

for some system, for example, if your system has some viscosity, then this is not true. There 

will be a term with viscosity 𝜂∇2𝐵⃗⃗. 
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But, still then this fact is correct that the magnetic flux across any cross-sectional surface of a 

magnetic flux tube is constant. 
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But which is not constant and correct if you take any arbitrary cross-section any arbitrary 

surface made by the fluid element inside the flow field, then if you calculate the total flux 

across the surface of the magnetic field. 
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Then whether these will be the same to that surface which is evolved in time and now is 

situated to a new position. 
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If you just start with a surface over here you calculate 𝐵⃗⃗ ∙ 𝑑𝑠 and then you take the integral 

over this surface then this surface with the fluid flow, for example, now comes here. Now, 

you calculate again integration 𝐵⃗⃗ ∙ 𝑑𝑠. The question is whether this will be equal. Yes, for 

that to be equal 𝑩 has to satisfy magic equation. 



So, this is all about the frozen-in theorem for the magnetic field and in ideal MHD. 

(Refer Slide Time: 42:15) 

 

So, in the next discussion I will start discussing about the inviscid invariants of MHD fluids. 

Thank you very much. 


