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Hello, and welcome to another lecture session of Introduction to Astrophysical Fluids. Now, 

we have already started discussing the plasmas, and I have already introduced some very 

basic concepts of plasma, how to define a plasma, how to characterize a plasma, how to 

describe the plasma, and we saw that as plasma is an ensemble or I mean is a system 

consisting of charge species then we need actually 2 sets of equations. 

So, one is for the describe in the matter part another is to describe the electromagnetic fields, 

right, and for electromagnetic fields we know that of course, the Maxwell’s equations. There 

is no ambiguity about that. But how to describe the matter, then we have several options.  

Depending on the interest from case to case sometimes, we will describe plasma in terms of 

particles, where the particle behaviors are important to explain certain phenomena. 

Sometimes try to describe the plasma as a continuum then we define a plasma fluid, and 

sometimes we actually need the 2, then we talk about hybrid models as I said. So, this really 

creates a very interesting structure of plasma theory.  

That is why this is much vaster with respect to the normal hydrodynamic theory, and also as 

unlike the normal kinetic ensembles which is made up of normal neutral gas molecules, a 

plasma actually consists of particles which always have long range interaction through 

coulombic interaction which is totally absent in case of neutral gas molecules. Then, the 

analytical treatment of such a system is also non-nontrivial and sometimes becomes very 

much complex.  

Sometimes even we do not know whether we can treat sufficiently those the sets of equation, 

the systems of equation just by analytics then we have to simulate. So, in this lecture I will 

give you a very brief overview, on the different stages of description of a plasma. So, there 

are a lot of mathematical details which I will skip, and I will just say very qualitatively I 

mean maybe I will take help of some equation which are indispensable.  



Otherwise, it will be mostly a very superficial guided tour from kinetic aspect to a fluid 

aspect, and finally, our interest is to talk about the fluid models, and the corresponding 

utilities or I mean how to say that corresponding importance or applications in case of space 

and astrophysical context. 

(Refer Slide Time: 03:44) 

 

So, if you remember that we will just proceed as we did for normal hydrodynamic case that 

we consider even for a plasma that it is an ensemble of 𝑁 particles, but this 𝑁 particles can be 

charged, that is the thing, and we consider the Γ space. Now, if you remember from the 

lectures of the first week of this course.  

So, Γ space is the whole system configuration space where every single point. So, Γ space for 

example, for a system with 𝑁 particles and each particle have, for example, 3 degrees of 

freedom in space and 3 velocity components. So, a Γ space will be in general of 6𝑁 

dimensions, right, and if you want to include the time as 1 dimension then this will be 6𝑁 

plus 1 otherwise you will just say my Γ space is 6N dimension and time acts as a parameter. 

So, in Γ space, the total system configuration at one instant is presented by one single point in 

the space, and we can also just as you know that we can define 𝜌
𝑁

 which is the density of this 

ensemble points. Then we know that we can also create ensembles.  

So, an ensemble is nothing but collection of points was describing the same type of system 

only differing from each other by the choice of initial conditions. So, then 𝜌
𝑁

 we can define 



to be the density of such ensemble points and this 𝜌
𝑁

 is of course, a function of 𝑥1, 𝑢1, up to 

𝑥𝑁, 𝑢𝑁, and time 𝑡 as well. 
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So, every variable has 3 components because these are vectors. So, we have 2𝑁 such 

variables, so it will have 6𝑁 and then 𝑡. 
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Now, since unlike a normal system of neutral gas molecules here always one species is acting 

with the other by coulombic interaction. Then, we actually will be interested to find the joint 



probability because the one particles velocity and position is always governed by another 

particle. 

So, for example, if this one is getting closer to this one, irrespective of whether these are I 

mean of the other irrespective of the positions and the velocities of the other particle there 

will be some effect as well. Of course, we know from our previous discussion that if these 2 

particles are very far away, so that this particle is actually screened by its neighboring 

particles then the effect of this particle to this particle is negligible.  

But, in general, we cannot neglect the effect of any arbitrary particle with the other, and then, 

we will be interested to find the joint probability to say that which is 𝑓
𝑘
. So, 𝑓

𝑘
 is a joint 

probability distribution, so which is a function of 𝑥1, 𝑢1, 𝑥2, 𝑢2 and also 𝑥𝑘, 𝑢𝑘 and 𝑡.  
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So, this is simply the probability that the particle 1 to 𝑘 have coordinates 𝑥1, 𝑢1, I mean for 

example, if we just label the particles 1, 2, 3, 4, like this, then this joint probability 

distribution just says that this is the probability distribution. So, that the particle 1 is at 𝑥1, 𝑢1, 

at a given time 𝑡0. We are talking about something which is simultaneously occurring, and 

particle 2 will be at 𝑥2, 𝑢2.  

Particle 3 will be at 𝑥3, 𝑢3 and particle k will be at 𝑥𝑘, 𝑢𝑘. If we specify all these things then 

the question is that what is the probability that this positions and velocity are attained 

simultaneously. 
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 So, let us say we have 𝑁 particles, and from 𝑁 particles we just say that we are just 

interested in 𝑘 particles out of 𝑁 whose velocity and position we have designated already, 

and we want to know the joint probability distribution, so that they have this design I mean 

when 𝑝 designated positions and velocities at a given time. But all the other particles for 

example, particles 𝑘 + 1 to 𝑁, all the 𝑁 − 𝑘 particles, they can be at any position and 

velocity. 
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So, if it is the case then of course, we know this one is given by is equal to 𝑉𝑘
 integration 

over, so this 𝑉 is the volume, 𝜌
𝑁
𝑑𝑥𝑘+1𝑑𝑢𝑘+1 up to 𝑑𝑥𝑁𝑑𝑢𝑁, where all these things can vary 

from minus infinity to plus infinity, right. Because they can have any position and momentum 

that is the story for the rest 𝑁 − 𝐾 particles, is it clear? 

Then, the thing is that if we recall the lectures of the first week, then we can write a 

Hamiltonian for the macroscopic level ensemble of plasma particles because at microscopic 

level there is no dissipative force. All the fundamental forces are there and they are actually 

conserving energy, so we can write a Hamiltonian for the system, and we know that 𝜌
𝑁

 which 

is the density of ensemble points these will or rather should satisfy Liouville’s theorem. 
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So, if you now just use this one this Liouville’s theorem, let me just tell you something like 

this. So, this is the density of ensemble points and this is the joint probability distribution and 

if you just follow that 𝜌
𝑁

 satisfy Liouville’s theorem then after integration basically if you 

simply see that every 𝜌 can be actually attend from some probability distribution.  

Then you can finally, get the evolution equation for the joint probability distribution I mean 

the joint probability distribution of 𝑘𝑡ℎ
 particle. Just a minute. So, once again, so this 𝑉𝑘 is 

simply introduced just for the normalization purpose. 𝑉𝑘 is nothing, but the volume occupied 

by K particles.  



Those 𝑘 particles for which we are like now interested with a designated position and 

velocity, and then from this one, you have to actually just follow the same rule as we did for 

normal hydrodynamic case, and then you just can get this type of equation. Just write the 

Liouville’s theorem with this type of expressions, and then you can simply write this the 

equation for this 𝑓
𝑘
. Now, 𝑓

𝑘
 does not say that this is the probability distribution function for 

𝑘𝑡ℎ
 particle.  

This is a bit confusing here. So, 𝑓
𝑘
 means this is the joint probability distribution of 𝑘 

particles, and for example, 𝑓
1
 that will be the distribution function of one single particle. If it 

is 𝑓
2
 then it will be the joint distribution function of 2 particles. If it is 𝑓

3
 then this will be the 

joint distribution function of 3 particles, this type of thing. So, this is quite complicated 

actually. I do not want to enter into the details of this.  

So, if you are interested you can just search in any books, any standard book of plasma 

physics. So, you see that statistical mechanics that is also a good choice. But there is that 

book should contain the statistical mechanics of plasma. 

Now, you see finally, we have an evolution equation for 𝑓
𝑘
 and where you can see that this is 

nothing, but the equation where you have this 𝑢⃗⃗ 𝑟. ∇⃗⃗ 𝑥⃗⃗ 𝑟  𝑓𝑘
 of 𝑥𝑘, this is the space variation, of 

course, and this is the convective type of term, and this is the term which comes from its 

gradient in the velocity space, and here you can actually, all of them should be vectors not 

very much correct in writing like this. So, all these things are vector. 

Then you will see, this 
𝐹⃗⃗ 𝑟𝑠
𝑚

 is the force type of term, and this ∇⃗⃗ 𝑢⃗⃗ 𝑟 is the velocity gradient of 𝑓
𝑘
, 

and this third term, basically comes as an extra and this one gives you the information about 

the 𝑓
𝑘+1

. So, it simply says that if you want to study the evolution equation for 𝑓
𝑘
 that means, 

let us say if you are interested to study the evolution equation of 𝑓
1
, that means, how does the 

single particle distribution function evolve in time.  

Then, you have to know the information about 𝑓
2
, for example, that means, at least the 

functional form of joint probability distribution. The same thing if you want to know 
𝜕𝑓2

𝜕𝑡
 you 

have to know about 𝑓
3
 and so on. So, this gives us a hierarchy of equations and this is known 

as BBGKY hierarchy. There are 5 scientists. So, you just search their names that is you to do 

that.  



Then you will see that this basically creates a problem in closing the system of equation 

because at every point if the evolution equation of 𝑘𝑡ℎ
 of the distribution function, 𝑘 particles 

include the distribution the knowledge or needs the knowledge of joint distribution function 

of 𝑘 + 1 particle. 
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So, this is true. So, that is what I said here. The evolution equation of  𝑓
1
 contains 𝑓

2
 and also 

𝑓
2
 contains 𝑓

3
 and so on. So, sometimes if you now just can write or rather you can express 

𝑓
2
 in terms of 𝑓

1
 and the 2-particles interaction.  

So, you can write always the joint probability distribution of 2 particles which are 

interrupting with each other as a sum of the 2 terms, this one 𝑓
1
(𝑥⃗⃗ 1, 𝑢⃗⃗ 1, 𝑡)𝑓2

(𝑥⃗⃗ 2, 𝑢⃗⃗ 2, 𝑡) is the 

product of the 2 probability distributions of single particles. That means only this one 

𝑓
1
(𝑥⃗⃗ 1, 𝑢⃗⃗ 1, 𝑡)𝑓2

(𝑥⃗⃗ 2, 𝑢⃗⃗ 2, 𝑡) survives if the 2 particles are independent. Now, this one 

𝑔(𝑥 1, 𝑢⃗ 1, 𝑥 2, 𝑢⃗ 2, 𝑡) is nonzero, only two particles are interacting which with each other, right.  

So, for example, if we just say that if we are interested in first particle and second particle, 

this is the level number of the particles, then that will be equal to, so, 𝑓
2
(1,2) =

𝑓
1
(1)𝑓

2
(2) + 𝑔(1,2). 
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Similarly, you can think of the joint distribution function of 3 particles then you have the first 

term which designates the product of the 3. That means, if the 3 particles are non-interacting, 

then their joint distribution function would be simply this 𝑓
1
(1)𝑓

2
(2)𝑓

3
(3). Then 𝑓

1
(1) 

should be multiplied with this one 𝑔(2,3) that means, that if 2, 3 are interacting.  

But they are independent of 1. This is the case. If 3, 1 are interacting, but they are 

independent of 2, and if 1, 2 are interacting, but they are independent of 3, all these things are 

sum because they are the net effect and they are mutually exclusive. So, that total possibility 

will be the sum of the 3, and finally, there is a possibility that all the 3 particles are mutually 

interacting then you have ℎ(1, 2, 3). So, of course, if there is no interaction, we have 𝑔 and ℎ 

equal to 0.  

So, only this term 𝑓
1
(1)𝑓

2
(2)𝑓

3
(3) will survive, and in such case, you know that the kinetic 

equation which we should obtain is nothing where something similar to Vlasov equation. 
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But there is a physics problem that is Vlasov equation is only valid for collisionless systems, 

but for collisionless systems we know that in principle fluid equations cannot be derived 

because collisionless systems in principle should not relax towards a Maxwellian distribution, 

right. Although, you can always derive the moment equations, but you cannot close the 

equations that is the problem. That is why finally, a dynamical theory for the continuum is 

impossible to write in theory. 

But if a plasma is in thermodynamic equilibrium, then actually one can find this 𝑓
1
 that is a 

single particle distribution is like this (
𝑚

2𝜋𝑘𝐵𝑇
)
3/2

exp  (
−𝑚𝑢1

2

2𝑘𝐵𝑇
) and 𝑔 at least the 2-particle 

introduction function is given by this 
−𝑞1𝑞2

𝑘𝐵𝑇

exp (
−|𝑥⃗⃗ 2−𝑥⃗⃗ 1|

𝜆𝐷
)

|𝑥⃗⃗ 2−𝑥⃗⃗ 1|
𝑓

1
(𝑢⃗⃗ 1)𝑓1

(𝑢⃗⃗ 2). So, it is a simplified 

thing and which says that this is not very much different from their individual products, but it 

is just modulated or multiplied by this factor of this screening effect. So, this is nothing, but a 

screening effect factor due to coulomb’s interaction. 
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So, from here you can actually see that if 𝑥⃗⃗ 2 − 𝑥⃗⃗ 1 is very, very large than finally, this 

exp (
−|𝑥⃗⃗ 2−𝑥⃗⃗ 1|

𝜆𝐷
)

|𝑥⃗⃗ 2−𝑥⃗⃗ 1|
 term is actually negligibly small. So, in practice for the case where we are talking 

about collisionless systems we can simply neglecting 𝑔(1,2).  

We can write the kinetic equation which is, so, 𝑓
1
 once again this simply designates that this 

is the distribution function of 1 particle, 

𝜕𝑓1(1)

𝜕𝑡
+ 𝑢⃗⃗ 1. ∇⃗⃗ 𝑥⃗⃗ 1𝑓1

(1) +
𝐹⃗⃗ 

𝑚
. ∇⃗⃗ 𝑢⃗⃗ 1𝑓1

(1) = 0. 

 So, this is the Vlasov equation. 
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Now, we also know that a Vlasov equation does not reduces to a plasma in thermionic 

equilibrium that means, it never leads to a Maxwellian, in principle. But we have the good 

news if we consider a spatially homogenous plasma then it is actually still possible to solve 

for 𝑓
1
 that means, the single particle distribution function even after including 𝑔, and one 

then gets 𝑓
1
 as a function of 𝑢1 and 𝑡, although this 𝑓

1
 is not necessarily Maxwellian. I am 

just writing this. Not necessarily Maxwellian. 

But, in large times this will tends towards a Maxwellian distribution and this equation while 

we are talking about an especially homogenous plasma the corresponding evolution equation 

for the single particle distribution which is known as Lenard-Balescu equation. It was derived 

by Lenard and Balescu both in the year of 1960.  

This one basically relaxes toward Maxwellian. So, that was the thing that even for our 

system, which is not really collisionless, which is collisional, we can actually still do 

something very easy like we do in case of a Vlasov equation. That means, we can directly 

start from the very beginning with an only velocity dependent single particle distribution 

function, and it actually tends towards Maxwellian, but then we have to use Lenard-Balescu 

equation. 
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This is a spatial case of Fokker-Planck equation. A Fokker-Planck equation is a class of 

equations where collision is not neglected at all, but it is modeled as a diffusion in velocity 

space. Once again, Fokker-Planck equation is very important for plasma physics, in general.  

But for the current scope of this course well it is just I am giving as an information if you are 

interested you can search further. Now, we say that analytically how to simplify a plasma just 

by assuming this to be spatially homogeneous. Now, for a collisional non-Vlasov of plasma, 

that means, a collisional plasma which actually should relax to a Maxwellian distribution, we 

can effectively think to derive fluid equations from Vlasov equation as well. 

We do not have to go through Lenard-Balascu, but directly Vlasov equation under a certain 

condition where we are considering perturbations of very high frequency, and that means, 

within this perturbation time period almost no collisions are there. So, the system is very 

much collisional, but finally we can still consider our basic kinetic equations to be Vlasov 

equation just by thinking that the frequency of the perturbation is a very, very high value. 
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So, the period is very, very small. Now, since the plasma is consisting of singly charged ions 

and electrons, of course, in principle plus neutrals, but they are these two charged species, we 

can actually derive separate fluid equations for both. Actually, for plasma I mean for ion, you 

have single fluid evolution equation as 𝑓𝑖, for electron you have 𝑓𝑒. So, I am just writing in 

case you forget 𝑓𝑖, 𝑓𝑒 like this (𝑓𝑖, 𝑓𝑒) and then that leads us to the abstention of 2 fluid model 

of plasma. 

Now, we have finally, integrate to get the macroscopic equations, for each species these 

equation of course corresponding to several indifferent order of movements of velocity, and 

then you know this is the traditional perception for obtaining macroscopic equations. 
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But the question is that practically we need equations where we can part of the system with 

any arbitrary frequency, the frequency can be low actually. Then how to do that? Then we 

cannot use Vlasov equation. So, in order to derive fluid equations for low frequency 

perturbations in principle, we have to take the effect of collisions, but once again analytically 

I mean handling the collisions is not a matter of joke.  

So, we do it for the time being heuristically and we simply say that we are no longer 

considering particle to particle collision effects. 
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So, what we do? Actually, we think that the particle-to-particle collisions are no longer 

considered here. What you consider is a very simplistic picture of the collision, and we say 

that we are more interested in the global effect of the collision. Then, we just say that the 

collision effect, at least the level of collision effect of the collision where we are interested is 

just the momentum exchange between the whole ion population.  

The whole in electron population due to their difference in the bulk velocities or the fluid 

velocities. So, for every charged species you can actually define a derive macroscopic 

velocity or fluid velocity, and if you can do that simply there will be a discrepancy in the 

fluid velocities of the electron population and the ion population, and since the electrons are 

lighter in nature when they will just encounter. So, once again this is something a very 

simplistic picture.  



You can actually think like that. So, it is not really particle to particle collisions, but the 

global collision effect is that the total electrons are making a fluid, the ions are making a 

fluid, and ions are mostly heavy, they have almost the same number density as that of 

electrons, at least nearly same, not necessary exactly the same but ions are heavier, so 

electrons are just colliding with the ions and they are losing momentum. 

So, there they are losing momentum, that is exactly the same thing. So, from a revolver you 

have a bullet. So, if you hit the bullet to let us say a wooden board or something and the 

board is very massive, so what happens, then the bullet simply loses some amount of the 

momentum to this massive, and I mean all massive wooden board which is addressed.  

Here the ions are not addressed in general, but they are much bulkier. So, electrons are much 

losing their momentum, to this ion population, and we just say that this is only the case of I 

mean the grow of effect of the collision, this momentum exchange between the ion fluids and 

the electron fluids. Although, the real story of the collision is much more complicated. 
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So, in that case what we can do? We can simply say that. Just a minute before just going to 

that. It should be 𝑚𝑒 as well. So, here you see that if you just consider this fact then you will 

see that after a few steps of straightforward algebra you can finally, like derive the fluid 

equations for both the populations and this effect of collision which is of our primary interest 

here is given by simply this 𝑚𝑒𝑛𝑒𝜗𝑐(𝑣 𝑒 − 𝑣 𝑖).  



So, this 𝑚𝑒𝑛𝑒𝜗𝑐(𝑣 𝑒 − 𝑣 𝑖) is just the exchange term of the electron and ion fluids once again. 

So, now, this 𝑚𝑒𝑛𝑒𝜗𝑐
𝑑𝑣⃗ 𝑒

𝑑𝑡
 thing is nothing, but the inertia term. So, there are 2 terms 

𝑑

𝑑𝑡
+

(𝑣 𝑒 . ∇⃗⃗ )𝑣 𝑒 and of course, there is (𝑣 𝑖 . ∇⃗⃗ )𝑣 𝑖 type of terms. So, that you can easily understand. 

This −∇⃗⃗ 𝑝𝑒 is the electronic pressure, this −∇⃗⃗ 𝑝𝑖 is the ionic pressure. This 𝑛𝑒𝑒(𝐸⃗ + 𝑣 𝑒 × 𝐵⃗ ) is 

the Lorentz force on electrons and this 𝑛𝑖𝑒(𝐸⃗ + 𝑣 𝑖 × 𝐵⃗ ) is Lorentz force on the ions, and 

these are the momentum exchange terms 𝑚𝑒𝑛𝑒𝜗𝑐(𝑣 𝑒 − 𝑣 𝑖), and 𝑚𝑒𝑛𝑒𝜗𝑐(𝑣 𝑖 − 𝑣 𝑒).  

This is the same momentum, so one is (𝑣 𝑒 − 𝑣 𝑖), one is (𝑣 𝑖 − 𝑣 𝑒). So, simply as you can see 

that here this will be minus and this will be plus, we have a different sign. So, this one 

𝑚𝑒𝑛𝑒𝜗𝑐(𝑣 𝑒 − 𝑣 𝑖) is losing momentum this one is 𝑚𝑒𝑛𝑒𝜗𝑐(𝑣 𝑖 − 𝑣 𝑒) gaining momentum in 

fact. The one is gaining that means, that electronic velocities are much more I mean 

important than the ionic velocity, so, this total part 𝑚𝑒𝑛𝑒𝜗𝑐(𝑣 𝑖 − 𝑣 𝑒) is a gaining momentum 

for the ionic fluid. 

Now, up to that this was the 2 fluid models. So, we have 2 separate fluids, one for the 

electrons one for the ions. Then, for strongly ionized plasma, in general what happens that 

even locally 𝑛𝑖 and 𝑛𝑒, they are very much close and almost equal.  

Then you can actually add and subtract those two equations to find a representative fluid 

which is not a real fluid, but it is a representative fluid which globally represents the thing 

and this is called the monofluid model of the plasma. 
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Then, you do not have any longer existence of the ion electronic fluid or ionic fluid, but it is a 

representative global fluid whose variables they are not defined by this type of things. So, the 

𝜌 will simply be the common density times that total mass.  

Total mass I mean mass of one ion plus mass of one electron. The velocity will simply be 

given by 
𝑚𝑖𝑣⃗ 𝑖𝑛𝑖+𝑚𝑒𝑣⃗ 𝑒𝑛𝑒

𝑚𝑖𝑛𝑖+𝑚𝑒𝑛𝑒
 , but since 𝑛𝑖 and 𝑛𝑒 they are the same, then actually 1 𝑛 is cancelled 

from numerator and denominator and you can simply see this is the center of mass velocity. 

(Refer Slide Time: 33:58) 

 

So, pressure is just algebraic sum of the ionic pressure and the electronic pressure 𝑝 = 𝑝𝑖 +

𝑝𝑒. 
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So, of course, although here you do not have to forget that here, we are just talking in terms 

of the momentum evolution equation. But for every single species you have actually a 

continuity equation. But this continuity equation should not look like very simple as that.  

Actually, just because it is too detailing, but I will just be saying that every continuity 

equation should look like this 
𝜕𝜌𝑖

𝜕𝑡
 plus ∇⃗⃗ . 𝜌𝑖𝑣 𝑖, so, for example, this is for the ions is equal to 

𝑆𝑖, where 𝑆𝑖 is the source of ions. So, the source of ions is nonzero in a plasma. But of course, 

if you are thinking that there is no longer production of ions and electron then this is also 0, 

and the same thing for the electrons.  
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You have an equation like this 
𝜕𝜌𝑒

𝜕𝑡
+ ∇⃗⃗ . 𝜌𝑒𝑣 𝑒 = 𝑆𝑒 and finally, you add them up and if you do 

that algebra very carefully, we will see that it will give you a combined equation for the 

global monofluid variable. So, you have a single fluid continuity equation. In the same way, 

if you add these two equations you will get the momentum evolution equation for the 

resultant fluid. 
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Once again 𝑣 is the monofluid velocity, is equal to −∇⃗⃗ 𝑝 + (𝐽 × 𝐵⃗ ). Now, 𝐽 is the current 

density which is nothing, but 𝑛𝑒(𝑣 𝑖 − 𝑣 𝑒),  plus 𝜇∇2𝑣 + 𝜌∇𝜑. This ∇𝜑 is the body force. 
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So, body force terms actually I did not include here, but it can be included any time. I have 

just written because most of the cases in astrophysics we write this, and then if you add these 

2 equations you will get the evolution for this bulk velocity, if you subtract these 2 equations 

as you can easily understand you will get an evolution equation for the current. 
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Actually, this is known as generalized Ohm’s law. 
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After doing some water analysis which is not very, very simple, but they are sufficiently 

useful, you can simplify considerably the total evolution equation where finally, the 
𝜕𝐽

𝜕𝑡
 term is 

no longer existing and it simply gives you a constraint between the 𝐸, 𝐵 and 𝐽 field.  

This is known as the very practical form of generalized ohms law (𝐸⃗ + 𝑣 × 𝐵⃗ ) is equal to 
𝐽

𝜎
, 

and you have your Faraday’s law from Maxwell’s equation. So, if you just like replace your 

electric field by this equation you will simply get something like this 
𝜕𝐵⃗ 

𝜕𝑡
 is equal to ∇⃗⃗ × (𝑣 ×

𝐵⃗ ) because ∇⃗⃗ × 𝐵⃗  is equal to 𝜇0𝐽, since the displacement current is neglected here.  

If you again do expand this you will simply have something like −
∇2𝐵⃗ 

𝜇0𝜎
 and then this 

1

𝜇0𝜎
 , you 

can call 𝜂. That we will discuss in the next lecture that will be the magnetic diffusivity. Now, 

for the closure, we can again go to the energy equation as we did it for normal fluids. But we 

can also for the simplicity at least for our astrophysical context, close the system at this 

position just by saying that this is poly tropic in nature. 

Now, you see that this total sets of equation they are call the monofluid equations of a plasma 

or the magneto hydrodynamics equation. Why magneto hydrodynamics? Because they are, I 

mean the charge densities they are very, very equal, so locally the electric force part is absent.  

So, you see that in the Lorentz force component there is no electrostatic part, so only 

magnetic part is there, that is why we are actually saying, and actually when in this case you 

can easily see that the total 𝐸 is also removed by 𝑣 × 𝐵⃗  and some ∇2𝐵⃗ 𝜂. So, we do not need 

the information about electric field when we are talking about this magneto hydrodynamics. 

That is why it is called magneto hydrodynamics and not electro hydrodynamics. 

So, last thing is that it is useful to understand that magneto hydrodynamic model is actually 

valid. So, let us say if our system is such that the ions are not actually moving then what will 

happen, that the electrons are primarily moving and then the fluid is no longer monofluid 

model.  

Then this is not possible to maintain the charge quasi neutrality at every point in space. So, 

what do we do? So, this is also I mean not charged neutrality actually this is also the equality 

in the number density at every point in the flow or in the plasma. 



So, what is needed? It is needed that. So, if you just try to understand the physical part that 

the charge neutrality or the number density quality is maintained very properly at every point 

in space the requirement is that the ions, we should be interested in such link scales.  

In such time scales, in which the bulky ions are also moving and when ions are moving the 

electrons are actually following them. If this is true then only, we can talk about the charge 

neutrality at every point or that equality in number density, and this is only possible when we 

are interested in the length scales beyond so called ion inertial length scale. So, ion inertial 

length scale is the length scale beyond which you can see the ion particles to move. 

Let us say, let me just give you an example, for the time scale it is the same, you have to be 

interested in a time scale which is greater than the 1 by the plasma frequency times scale, the 

electronic plasma of frequency time scale. So, just I am giving you one example let us say 

you and 4 of your friends are going to just to walk in a garden and one of your friends has a 

problem in leg, maybe he has been injured.  

So, he cannot walk today for some reason and he cannot put the rhythm with the others. Now, 

then if you just say, no problem. I mean, there can be 2 approaches one is that you just say we 

do not care about this person, and we just maintain our original rhythm of walking then he 

will be lagged behind. Now if you say, hey we are all friends and we have to take care of this 

guy. So, we will go together today. So, everyone actually says that, we are not in hurry, so no 

problem.  

So, we should go together then everyone is actually waiting till your friend is moving. So, 

when your waiting period is long. So, your movement is also getting slow down, right. So, 

that is the essence of magneto hydrodynamics.  

Now, you can say that, we have the intelligence of smartness, we have to slow down. But 

how do electrons do? So, actually what happens? Those electrons are not slowing down their 

movements, but their movements are much more. So, they have some drift motion, but their 

movements are much more thermally dominated because they are always the temperature is 

high and their mobility is very high, so they are mostly randomly moving. 

So, what happens? If you are actually waiting for very long time the ions are moving in a 

specific direction due to its inertia in specific direction, in the meantime they are moving here 

and there. But if we have waiting for long basically the random motions with respect to the 



ions is becoming negligibly small. It is almost about when you are just checking the motion 

of the seconds, I mean the motion of the hour’s hand.  

Then what happens? Then you see that, when the 1 hour is completed then again, the 

second’s motion is again getting up to its original position. It does not say that the second was 

slow down or it did not move at all. That simply means that in the whole period or whole 

interval of time its movement is averaged out. 

Then what happens? That the total picture gives us that the bulky ions they are just moving 

slowly and electrons are, because their random motions, are averaged out, they are simply 

following the ions as a background, and that is exactly the picture of magneto 

hydrodynamics, and if you can imagine that picture then you are all set for studying magneto 

hydrodynamics. So, this 
𝐶

𝜔𝑝𝑖
 is an estimate of the ion inertial length scale.  

This is the time scale which is 
1

𝜔𝑝𝑖
. So, what happens? So, this one ion inertial length scale is 

given by the light speed by the ionic plasma frequency. 
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The time is of course, 
1

𝜔𝑝𝑖
. This is not much different you can also use here 

𝐶

𝑓𝑝𝑖
 that is just an 

order, they are at the same order. So, magneto hydrodynamics or the monofluid model is 

valid for a plasma under 2 situations one is that the charge neutrality or the equality in 

number densities they are followed or they are obeyed at every point, and for that what 

happens that we have to choose length scales and timescales which are very long, and as you 

will see that it is simply saying that or the perturbations, so in magneto hydrodynamics is the 

regime where we are only interested in the low frequency of the perturbations, or large scales. 

The same thing actually happens when we will talk about the turbulence. Then of course, we 

will not talk above the length scale, but we will talk about the fluctuation length scales. 

So, this is all about a very brief guiding tour from kinetic to the fluid theory, and actually 

monofluid theory of magneto hydrodynamics. In the next lecture, I will start discussing 

different properties of an MHD fluid and observations with modes, etc. 

Thank you very much. 


