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Boltzmann equation for collisional systems I 

 

Hello and welcome to the course of Introduction to Astrophysical Fluids. So, we just 

discussed that how the distribution function in the 𝜇 space can also obey the Liouville’s 

equation and from that we also obtained so called Vlasov equation or collisionless Boltzmann 

equation. 
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I said, if you just remember that the equation should look like this 

𝜕𝑓(𝒓, 𝒖, 𝑡)

𝜕𝑡
+ 𝒖. 𝛁 𝑓 +

𝑭

𝑚
. 𝛁𝒖𝑓 = 0 

And I said that this is only possible when the system is collisionless. 
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If the system is collisional, then the right-hand side will no longer be zero and how should the 

right-hand side be looking like? There is no unique response for that, unfortunately. But from 

case to case, we can try to model the collisions. Before doing that, let us first understand one 

conceptual thing that there is no collisionless system in nature okay. This is just an idealistic 

approximation. What happens in reality, we have only weakly collisional system and strongly 

collisional system or normal collisional system normal. Now, how to quantify that? I mean 

how to really define in a proper way that which system is collisional and is weakly collisional 

and which system is strongly collisional.  Do we have a way for that?  

So, in kinetic theory, maybe you have learnt the concept of mean free path. So, mean free 

path is nothing but the average path traversed by one particle between two successive 

collisions. So, from that, you can easily understand that if this mean free path basically in a 

given container is very large with respect to the accessible space for moving of the particles, 

then the system can be thought to be weakly collisional okay. That means, the most of the 

time the particle is moving without collision. 

For example, that you have a box and the box is consisting of particles and we say that 𝑛 is 

the number density of the box. So, 𝑛 particles will be in unit volume, that is the definition of 

the number density. Then one particle will have 
1

𝑛
 volume. So, we have to understand what is 

the meaning of weakly collisional system and strongly collisional system and actually how 

can we distinguish one from the other? 
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Let us take for example, a dilute gas type of system, where the gas molecules are very 

distance from one another. So, for such type of system, you can easily understand that the 

effective volume of one particle which is nothing but 
4

3
𝜋𝑎3 will be much less than the 

available space for the particle, where 𝑎 is the radius of one particle.  

Now, how to calculate that? There is a very elegant calculation for that. You can think that if 

𝑛 is the number density of the system, then 𝑛 particles will have unit volume. Then, one 

particle will have 
1

𝑛
 volume.  

So, if I just give you a container and the gas molecules are constrained to be in the container, 

then 
1

𝑛
  will be the volume which is available for one single particle, given 𝑛 is the number 

density. Then, the condition for the system, the system is weakly collisional if 

4

3
𝜋𝑎3 ≪

1

𝑛
 ⇒  

4

3
𝜋𝑎3𝑛 ≪ 1 

⇒  𝜋𝑛𝑎3 ≪
3

4
< 1 

 𝜋𝑛𝑎3 ≪ 1 

So, if you know the molecular radius or the particle radius, sorry every time I say molecular 

radius because I am thinking of gas molecules, but gas particles in general and if you know 



the number density, then basically you can see whether the system is weakly collisional or 

not ok.  

Now, another way of seeing whether the system is weakly collisional or not, that is the 

concept of mean free path. So, the mean free path basically is the average path traversed by 

one particle of the gas between two successive collisions right. 
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And if you remember our rough approximation gives quantitative formula for mean free path 

𝜆 =
1

𝑛𝜋𝑎2 
=

𝑎

𝑛𝑎3𝜋
⇒

𝜆

𝑎
=

1

𝜋𝑛𝑎3
≫ 1  

⇒ 𝜆 ≫ 𝑎   

Where, 𝑎 is the particle radius. It simply says that a system is weakly collisional, if the mean 

free path is very-very large with respect to the molecular or the particle radius okay.  

In the same manner, if the mean free path is of the order or even it is not very-very large, but 

it is just moderately large with respect to the molecular radius or the particle radius of the 

system, then the system can be thought to be collisional or moderately collisional.  

So, a dense gas is an example of a collisional system. Now, the question is how to model 

collisions? The answer is there is no general recipe. However, we can model the collisions, if 

the particles collide with each other by binary elastic collisions. That means, that every single 



particle will be considered to be as hard rigid sphere type of thing and no source of 

dissipation. So, no energy will be dissipated and actually, I have to say that the kinetic energy 

will be conserved before and after the collision. That is the definition of elastic collision, you 

all know that linear momentum is conserved in any type of collision whether collision is 

elastic or inelastic or partially elastic; but kinetic energy is conserved only in the case of 

elastic collisions.  

So, basically, we are taking the case where we have two conservations; one is the linear 

momentum conservation and other is kinetic energy conservation, before and after the 

collision. 
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Firstly, we estimate the number of collisions, let 𝛿𝑛𝑐 be the number of collisions per unit 

volume, per unit time, these things are important; per unit volume per unit time, which deflect 

particles into a solid angle 𝑑Ω; that is also important. Now, what is the picture for that? Let us 

say this particle is coming from this direction ok and this particle is coming from this 

direction ok; this one. (Refer Slide Time: 12:34) 

Now, when they collide over here; then, after the collision, the new particles will go let us say 

here and here for example. So, let us consider the velocities of particles before collisions be 

𝒖𝟏 and 𝒖 and after collision it became 𝒖𝟏
′  and 𝒖′. Let us say, someone is counting that how 

many particles are coming into this direction, basically just keeping the momentum 

conservation intact, the two particles can go in any possible direction. So, someone can put a 



detector, which just calculates the particles which are deflected after the collision in a solid 

angle which is 𝑑Ω and we are interested in calculating.  

So, 𝛿𝑛𝑐 will be the number of collisions per unit volume per unit time and deflects the 

particles into a solid angle 𝑑Ω. Now, how to do that theoretically? Well, we have to start from 

very simplistic assumption.  

Let us suppose we have two particle beams. For simplicity, we just take like a homogenous 

cylinder type of thing and one is just full of particles having velocity 𝒖 and with number 

density 𝑛 and another is of has a number density 𝑛1 and velocity 𝒖𝟏 okay.  

I call this one (cylinder with velocity 𝒖 and number density 𝑛) as beam 1 and this one 

(cylinder with velocity 𝒖𝟏 and number density 𝑛1) as beam 2. Now, we see that if we try to 

understand what is happening to an observer which is sitting on beam 1. Then to every 

particle of this beam, some observer is attached basically, that is the equivalence thing of 

saying that observer is placed on beam 1, okay. So, every particle of beam 1 will experience a 

flux of particle 𝐼, will be equal to simply 

𝐼 =  |𝒖 − 𝒖𝟏|𝑛1. 

Why it is that? Because these particles are having or experiencing a velocity, an incoming 

velocity of the second beam or beam number 2 with a velocity (𝒖 − 𝒖𝟏) right. So, |𝒖 − 𝒖𝟏| 

times the number density of the second beam, that will give the flux of the particles which are 

experienced by every particle of beam one okay.  

Flux is nothing but density times velocity, 𝑛𝒖 type of thing. Another way of defining flux is 

nothing but number of particles per unit time per unit area perpendicular to the direction of 

particle flow okay. So, that is the definition of flux. So, you can easily see that 𝐼 will simply 

be the number the flux of the particles as experienced by every particle of beam 1. So, now 

we understood 𝐼 is the flux of particles from the incoming beam 2 as experienced by every 

particle of beam 1. 
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So now, we can easily say from common sense that 𝛿𝑛𝑐, which is the number of collisions 

per unit volume per unit time and deflecting particles into a solid angle 𝑑Ω will simply be 

proportional to 𝐼 okay i.e., 𝑛𝑐 ∝ 𝐼. Because if the number flux of the particles is greater, then 

of course, the number of collisions will also be greater, right.  

Again, 𝛿𝑛𝑐 ∝ 𝑛; that means the number density of the particles of the observer beam where 

the flux of the particles is coming into, if that is more and more, then again, the number of 

collisions is greater okay.  

And finally, 𝛿𝑛𝑐 ∝  𝜎∗(Ω)𝑑Ω. So, 𝜎∗(Ω)𝑑Ω is nothing but the probability distribution as a 

function of Ω. So, finally, by the law of or rule of joint variation, you can easily say this is 

exactly equal to 

𝛿𝑛𝑐 = 𝐴𝜎∗(Ω)𝑑Ω𝑛𝐼 

Where 𝐴 is just the proportionality constant. Just remember that when I say 𝑛𝑐 ∝ 𝐼 is true, 

then 𝑛 and 𝜎∗(Ω)𝑑Ω are kept constant. When 𝛿𝑛𝑐 ∝ 𝑛 is true, then 𝐼 and 𝜎∗(Ω)𝑑Ω is kept 

constant. When 𝛿𝑛𝑐 ∝  𝜎∗(Ω)𝑑Ω is true, then the other two factors are kept constant. But 

when we are saying the we apply the rule of joint variation, then all the three factors will vary 

okay.  

 



Then, you can easily see that 𝛿𝑛𝑐 is nothing but 

𝛿𝑛𝑐 = 𝐴𝑛𝑛1|𝒖 − 𝒖𝟏|𝜎(Ω)𝑑Ω 

where I simply redefined my  𝜎(Ω) as 𝐴𝜎∗(Ω) okay. That is just a nomenclature okay. Now 

finally, our goal is to derive the Boltzmann equation for collisional systems. For collisional 

systems, basically 𝑓(𝒖, 𝑟, 𝑡) that is the distribution function does change with time. So, that is 

something very important. For collisionless system we do not have 
𝑑𝑓

𝑑𝑡
  right okay. 

Thank you.  


