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Hello, in this lecture of Introduction to Astrophysical Fluids, I will mostly discuss of the 

general perspective of studying the Fluid Dynamics with respect to a rotational frame of 

reference. 
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So, the title is of course, the dynamics of an astrofluid in a rotating frame, now it is true 

that the first question comes to our mind is that why it is at all important, to study the fluid 

dynamics of an astrophysical fluid in a rotating frame of reference, well the answer is very 

easy. For example, almost all the astrophysical objects like the planets, stars, accretion 

discs, galaxies, they are rotating, as we already discussed in the last lecture. Now, when 

an astrophysical object undergoes solid body rotation, for example the case of a slowly 

rotating star, as we mentioned last time right that due to the turbulent viscosity, they have 

always the tendency to switch from the state of differential rotation to a solid body rotation. 

So, for this type of case, the study of fluid dynamics for a phenomenon gets analytically 

much more simpler if it is studied from a co-moving frame. That means a frame which is 

exactly rotating with the same angular speed 𝛀. 
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Let us say some body is now rotating along an axis, and it is performing a solid body 

rotation, then some object which is at rest or let us say, is stuck on this body, and if we are 

seeing from lab frame or some external frame of reference, then this object still has some 

acceleration or velocity type of thing, but with respect to a frame which is co-moving with 

the body, it is nothing but at rest. So, you see that considerable simplifications can be 

brought into a consideration, if we just talk in terms of the co-moving frames. Here, when 

we are talking about co-moving it is actually co-rotating frame.  

Now, this technique is also useful even when the body is rotating with a differential 

rotation, for example Sun. It should not, rather it need not move with a constant angular 

speed, but if let us say the system is moving with differential rotation, then let us just 

choose some reference frame which is moving with the average angular velocity or angular 

speed of the system that actually can also simplify the problem enormously. 

Now, for our study which we will discuss mostly in the next lecture, we will consider the 

assumption of incompressible and ideal fluid, why these two assumptions? 
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So, incompressibility assumption should come because we want to get rid of 𝜌 and the 

thermodynamics part. So, even if you have a barotropic closure type of thing you are still 

thinking of the thermodynamics. So, here this is very simplistic and of course if you want 

to do something more general, you are encouraged to do that, but for the scope of this 

course we are just using this simplest case of incompressibility.  

And why ideal fluid? because, first of all this is a very reasonable approximation for an 

astro-fluid, and also because the viscous effects are in most of the cases, negligible. Even 

in case of the slowly moving stars, you can use the concept of this solid body rotation. 

You know, that the effective viscosity, which causes the solid body rotation is not the 

viscosity which is considered in the Navier-Stokes equation, it is not the molecular 

viscosity, but it is the turbulent viscosity, although I have not introduced the concept yet 

but as an information you know this from the previous lecture. 



(Refer Slide Time: 05:32) 

 

So, these two assumptions will be used for our study. So, now the Navier Stokes equation 

for this type of system can simply be written with respect to a non-inertial frame of 

reference.  

Now, from your undergraduate physics course of classical mechanics you should know 

that (
𝑑

𝑑𝑡
)
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

= (
𝑑

𝑑𝑡
)
𝑛𝑜𝑛−𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

+ 𝛀 ×. Where 𝛀 is the angular speed of the frame of 

reference. 
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So, this equation relates the 
𝑑

𝑑𝑡
 of any vector (say 𝑨) in the inertial frame to the 

𝑑

𝑑𝑡
 of the 

that vector in the non-inertial frame.  

So, if you just use the same thing for this fluid, and then you can also write Navier-Stokes 

equation equivalently, just inserting the effect of this non-inertial or the rotating frame of 

reference 

𝜕𝒗

𝜕𝑡
+ (𝒗 ⋅ 𝛁)𝒗 = −

𝛁𝑝

𝜌
+ 𝒈 + 𝜈𝛁2𝒗 − 2𝛀 × 𝒗 − 𝛀 × (𝛀 × 𝒓) 

So, two additional contributions come, one is called the Coriolis force, given as −2𝛀 × 𝒗, 

this is actually Coriolis acceleration. If you multiply with the mass, then it will give you 

Coriolis force and the centrifugal acceleration −𝛀 × (𝛀 × 𝒓). And you can easily see that 

this whole thing is actually nothing but the Newton’s law, written within in a rotating 

frame of reference. 

Now, −2𝛀 × 𝒗 of course gets vanished when 𝒗 = 𝟎. So, 𝒗 is nothing but the fluid velocity 

with respect to the rotating frame of reference; so if something is stuck or is at rest with 

respect to the rotating frame of reference, then for that Coriolis force will be 0, but 

centrifugal force will still be there. 
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Now, how to further simplify this type of thing. So, one very simple but very useful 

mathematical identity is that you can write −𝛀 × (𝛀 × 𝒓) =
1

2
𝛁|𝛀 × 𝒓|2, so you can write 

it as a gradient of something, and this is my request that you try this at home and you can 

hint the given formula or you can use any other method, but one possible thing is that you 

can actually write this thing as this.  

Now, if you admit that, then your final evolution equation for the velocity or actually the 

evolution equation for the momentum should look like  

𝜕𝒗

𝜕𝑡
+ (𝒗 ⋅ 𝛁)𝒗 = −

𝛁𝑝

𝜌
− 𝛁 (Φ −

1

2
𝛁|𝛀 × 𝒓|2) + 𝜈𝛁2𝒗 − 2𝛀 × 𝒗 

Now, you see I said that I am assuming incompressible and inviscid fluids, but here just 

for this part I have not yet done any simplification, this is actually general compressible 

fluid with viscosity. The only thing here I have assumed is that the body forces are of 

conservative nature, which is true for gravity, so we can write 𝒈 = −𝛁Φ. So, if you notice 

carefully, the centrifugal acceleration term is inserted inside the gradient. So, now you 

have 𝛁(Φ −
1

2
𝛁|𝛀 × 𝒓|2), so if you call Φ−

1

2
𝛁|𝛀 × 𝒓|2 as Φ𝑒𝑓𝑓, at the end of the day 

your centrifugal acceleration does not do anything other than modifying the resultant 

gravitational potential, or your body force potential. So, if I just say that I am in such a 

system, where the gravitational potential is much larger than 
1

2
𝛁|𝛀 × 𝒓|2, then already the 

centrifugal acceleration is neglected.  
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That is exactly what I said, and one should not really worry about the centrifugal 

acceleration and that is exactly the case for Earth’s rotation, where this modification due 

to the rotation is fairly negligible, because the rotation is fairly slow. 
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Now, for Coriolis force this is no longer true, this has a non-trivial role. But Coriolis force 

comes into play only when the fluid has a relative non zero velocity with respect to the 

rotating frame of reference. 



So, in order to understand whether the Coriolis force plays a significant role in the motion 

or not, we have to compare that term with the non-linear advective term (𝒗 ⋅ 𝛁)𝒗. So, we 

just compare their order of magnitude, why? Because, if you see the momentum equation, 

when the fluid is having some nonzero relative velocity, other than 𝜈𝛁2𝒗, only (𝒗 ⋅ 𝛁)𝒗 

and −2𝛀 × 𝒗 will be remaining. But the viscous term is unimportant for most of the 

astrophysical system, so those two terms should then be compared. 
𝜕𝒗

𝜕𝑡
 is also the same case 

but, it can be vanishing for a steady flow even when 𝒗 is non-vanishing. But, the advection 

and Coriolis terms remains non zero when there is a non zero 𝒗. So, these two are very 

identical in nature, of course one is non-linear and one is linear. Because, 𝛀 is almost 

constant, at least it does not depend on 𝒗, at least in our problem. 
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So, we can compare these two. If we compare these two finally, we define a dimensionless 

number, because both of these terms have identical dimensions, so if we divide the non-

linear term by the rotation term finally, we will have roughly 
𝑉

Ω𝐿
. So, 𝑉 is the characteristic 

velocity of the system, 𝐿 is the characteristic length of the system, Ω is the constant rotation 

speed of the system. This dimensionless number is known as 𝑅0 or Rossby number. Now, 

you see that in this whole treatment, until this point, I have not said anything about the 

constancy of 𝛀. But, once again the thing is that if 𝛀 is constant then then this type of 

analysis becomes much more simpler, if we place ourselves in a co-rotating frame. 



So, that is why I am saying now if 𝛀 is not explicitly depending on time, then 𝛀 can be 

just thought to be constant and for that case Rossby number is given by 
𝑉

Ω𝐿
. But, if let us 

say 𝛀 is a function of time itself, then there is no problem, only then there will be an 

explicit time dependence of the Rossby number. So, 𝛀 need not be a constant. 
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So, what is now the meaning of Rossby number! So, of course you can see that when Ross 

by number has a large value for example when 𝑅0 ≫ 1, that means that the non-linear term 

greatly dominates the Coriolis force term and where Rossby number is less than 1, that 

means, the non-linear term is less than the Coriolis term. 

So, in the first case non-linearity wins and in the second case the rotational properties is 

winning. For example, if you are doing some experiment in your lab, now the question is 

that would your experiment be affected by the earth’s rotation? well you just calculate the 

Rossby number corresponding to the Earth’s  𝛀. If the Rossby number is very very large, 

then you say that I do not care about the rotation of the earth, if the Rossby number is of 

the order or slightly less than 1, then you have to take the effect of the earth rotation into 

account. And that is exactly the case where we are studying the fluid flows for the 

geophysical entities like atmosphere, the oceanic flow etc. So, here you can see that 𝑅0 

less than 1 simply gives us the instance, where we are talking about the large scale motions 

in ocean or in atmosphere. 



So, once again a low Rossby number simply says that the suppression of non-linear effects 

by rotation (error in lecture). This piece of information is specifically important for the 

people, who are were interested in studying fluid turbulence under some rotation, which I 

have not yet introduced, but just for your information. So, let us say you have a container 

containing some fluid and you rotate the system. So, if the rotation is very fast or if the 

rotation is very slow, how does the turbulence is affected! so (𝒗 ⋅ 𝛁)𝒗 is somehow a 

measure of the strength of the turbulence, because this is the non-linearity part and you 

know from maybe your previous knowledge, that turbulence is nothing but a measure of 

the strength of non-linearity. Of course, there we talk about another dimensionless number, 

called Reynolds number, here we are talking about the Rossby number. 

So, in the next discussion we will discuss some important properties or theorems and their 

eventual modifications in case of the rotating frame of reference. The first one will be the 

modification of the Kelvin’s vorticity theorem and depending on that secondly, I will 

discuss a very important theorem, called the Taylor-Proudman theorem, which is very very 

interesting for both our laboratory experiment and for large scale geophysical and 

astrophysical flows. 

Thank you.  


