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Hello and welcome to another section of Introduction to Astrophysical Fluid. As promised, 

in this session we will discuss or we will start discussing a new topic that is the effect of 

rotation in Astrophysical systems. 
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So, in many astrophysical systems, rotation is very very much important, because first of 

all they are the prominent effect, which can be seen by direct observations. For example, 

for Sun you can see really the images which can give you evidences of rotation; for 

distance stars or for distant objects where you cannot see directly then you have several 

other evidences. One evidence is that you can detect rotation by the virtue of the angular 

momentum associated with them, for example, for a distant accretion disc or a spiral 

galaxy, there are several methods by which you can calculate the angular momentum 

associated with the system and by using that you can actually confirm that the system is 

undergoing some rotation. There are techniques other than angular momentum by which 

you can actually also detect rotation, that is totally a different topic. So, if you are interested 

you can search over internet. 



Now, what are the typical astrophysical systems where we can see clear evidences of 

rotation? First, we have already discussed the case of accretion disks, then something like 

that but in a larger scale like the spiral galaxies, so milky way for example. Both has shapes 

like a spiral disc type of thing and it rotates, there are also the problem of the rotation of 

the stars where you can see the almost spherical objects are rotating. 

And the same thing for the compact objects; for example, the white dwarfs, the neutron 

stars including the black holes. The black holes have also clear evidences of rotation, so 

one question is that how to detect the rotation of the black hole or the spin rate of the black 

hole? There are very interesting works on that, you can also search for that over internet. 

Now, for all the systems the inclusion of the rotation is essential. Of course, if the system 

is very very much massive that means like compact objects or black holes then we actually 

have to take the gravitational correction due to general relativity into account, but in the 

scope of this current course we do not need to include the generate relativistic effect; that 

means the space-time curvature will not be considered in this course. 
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So, we will do something where simple classical rotations are needed. Now, as we already 

have discussed while discussing the equations of the perfect fluid and then discussing the 

Newtonian fluids and how the velocity gradient can have an unnecessary part other than 

the true viscosity part. Also we introduced two types of rotation, one was the solid body 

rotation, another was the differential rotation.  



So, the solid body rotation is nothing but a rotation where the whole body is moving with 

the constant angular velocity. The linear velocity can be different, but the angular velocity 

𝛀 should be a constant. So, remember that Ω𝑟 gives you the linear velocity in the cross 

radial direction (𝑣𝜃). 
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Now, for a solid body rotation, let us say if you are just assuming concentric shells like or 

concentric cylindrical shells, then they have some linear velocity gradient but they do not 

have any angular velocity gradient. On the other hand, for differential rotation both the 

angular velocity and linear velocity they vary in space and so that we have a linear velocity 

gradient as well as an angular velocity gradient. And when differential rotations are 

coming into play then what happens? the viscosity between two concentric layers become 

active because in rotation, the main role of viscosity is to prevent the relative rotation of 

one layer with respect to the other. So, if both of them are rotating in the same rate, then 

the viscosity effect would not work or would not be activated. But in differential rotation 

this is not the case, so viscosity should play a role. 
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Now, it is true that in usual fluids, very rarely solid body type of rotation is visible. Because 

there are so many things like compressibility, but if you are just taking a liquid for 

example, which is fairly incompressible, then differential rotation also starts to appear in 

the very beginning. We will see that after some time actually it actually decays, so what 

happens? Let us just take the concrete example of from our everyday life.  

So, let us take a bucket full of water and the bucket is rotated suddenly. Just try to imagine 

the picture, so if you have a bucket, a cylindrical bucket, and then you just put some torque 

on the surface of the bucket and you want it to rotate. So, the first thing which rotates is 

the surface of the bucket, because you give the force on the outer surface. You give this is 

a shear as well, a rotational shear.  

So, this gives you the rotation but the rotation starts from the surface, but the water which 

is very near to the axis of the bucket and far from the walls, this water is yet to start its 

rotation, so you can easily understand that at the very initial point the angular velocity near 

the wall is greater than the angular velocity near the axis of the bucket, so this actually 

creates an effective differential rotation. 
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Then, viscosity comes into play to counter or rather to resist the relative rotation between 

two concentric layers, for example the first rotating layers will try to move the adjacent 

slow rotating layers move faster and vice versa. And finally they end up by making a 

compromisation, and then what happens? the relative angular motion actually stops and 

that leads to a state where all the water will finally spin with a constant angular velocity 

and that is nothing but the angular velocity of the bucket itself.  

And at this point the whole system will rotate like a rigid solid body and this is actually 

known as the solid body or rigid body rotation. So, here we see that when viscosity comes 

into play, it basically transforms a differential rotation to a solid body or rigid body 

rotation, but it of course takes time. 
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So, in astrophysics, let us say by some observation or by some indirect observation if we 

gather evidence that some systems do not rotate like a solid body for example, then what 

can be the possible explanation for that? 

There can be two possibilities, one is that the viscous forces may not have enough time to 

develop and establish a solid body rotation; that means the system is rotating very very 

fast. So that is the case for a fast rotating system, which we will not discuss here in detail, 

but just for your information.  

Another possibility is that, for the system, the viscosity has time to develop but the system 

contains some sustaining mechanism, which maintains the differential rotation. And now 

the question is that where can we see this type of thing?  
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So for that, let us start by taking a very simple example which we have already studied in 

detail, that is the example of accretion disk and along with that we will say something very 

similar, that is the case of spiral galaxies. So, these are two axisymmetric rotating entities 

in astrophysics. 

Axisymmetric means that they have a direction or axis of rotation, and the properties along 

the direction of the rotation is different from the properties perpendicular to it. But in the 

plane perpendicular to the direction of rotation it does not matter in which direction you 

are in. So, if you just consider the cylindrical system then basically the system changes 

from 𝑧̂ direction to the (𝑟, 𝜙) plane, but in the (𝑟, 𝜙) plane it does not depend how much 

your 𝜃 is. 

Then you can actually go from the like the inner concentric cylinders to the outer 

concentric cylinders or vice versa, so the system does not depend on the choice of the 

azimuthal angle 𝜙. So, whenever we talk about axisymmetric system in cylindrical system, 

𝜕

𝜕𝜙
= 0 . 
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Sometimes we also say 
𝜕

𝜕𝜃
, it depends on the convention which we follow, either we take 

(𝑟, 𝜃, 𝑧) or we take sometimes in some literatures (𝜌, 𝜃, 𝑧) or sometimes we say (𝑟, 𝜙 , 𝑧) 

or (𝜌, 𝜙, 𝑧) these type of conventions all are present. 
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So, now we try to analyze a bit more in detail the case of the rotation and how the rotation 

mechanism basically is developed in an axisymmetric rotating entity like an accretion disc. 

For that, we recall the 𝑟-component of the Navier-Stokes equation for the steady flow of 

such a system. If you remember the basic accretion disc system, we had a very small but 

non-zero radial velocity. The velocity was predominantly in the cross radial direction that 

is in the azimuthal direction and we said that the system was an axisymmetric system, so 

𝜕

𝜕𝜃
 or 

𝜕

𝜕𝜙
 would also vanish always.  

And then, we also said that the system has some viscosity and that viscosity was 

responsible for causing the small radial inflow of mass, if you remember all these things. 

So, if we also remember that the main equation of dynamics for the accretion disc that 

came from the 𝜃-component of the Navier-Stokes equation written in the cylindrical 

coordinates. 

For the 𝑟 and 𝑧 components we had other information, for example using the 𝑧-component 

we obtained the condition for thin disc and using that one we obtained from the 𝑟- 

component of the Navier-Stokes equation, the Kepler’s criterion. 

So here we will actually follow the same methodology, here you will see that the 𝑟- 

component of the Navier-Stokes equation looks like −
𝑣𝜃

2

𝑟
= 𝑔𝑟 −

1

𝜌

𝑑𝑝

𝑑𝑟
, because we are just 



considering a steady state motion of a rotation motion of an accretion disc, so that we 

cannot say that the system does not have enough time for the viscosity to be developed. 

But remember, the steady state system is just gives 
𝜕

𝜕𝑡
= 0, but for our case, for simplicity, 

we also assume that 𝑣𝑟 is very very small, so 𝑣𝑟 can also be practically 0 and 
𝜕

𝜕𝜃
 is 0. If we 

assume all these things simply in cylindrical coordinates, the 𝑟-component of Navier-

Stokes equation becomes −
𝑣𝜃

2

𝑟
= 𝑔𝑟 −

1

𝜌

𝑑𝑝

𝑑𝑟
, 𝑔𝑟 is nothing but the radially acting 

gravitational acceleration. 

Now, you see that −
𝑣𝜃

2

𝑟
 nothing but the centrifugal force if you are in the frame of reference 

of the rotating system, or if you are just seeing the system from the laboratory frame of 

reference, then this is nothing but the centripetal force required to maintain the rotation. 

And 𝑔𝑟 is the gravitational part and −
1

𝜌

𝑑𝑝

𝑑𝑟
 is the pressure gradient force. 

So, if you remember that, for accretion disc and spiral galaxies which are thin, we can 

actually or in practical neglect the pressure gradient force to the gravitational force, or the 

net acceleration due to the pressure gradient force will be negligible with respect to the 

gravitational acceleration.  

Because, just check your old notes where we discuss the accretion disc, the ratio of the 

two will be simply of the order of 
ℎ2

𝑟2 and for a thin disc this is negligible.  

So, just to point this, it can be an interesting study to see that how this type of equation, 

how this ratio becomes for a non-thin disc. So, in a thin disc we are getting rid of this term 

and we will say that the pressure gradient force is no longer necessary for this balance 

equation. 
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So, we will say that it is effectively the gravitational part, gravitational acceleration which 

provides the necessary centripetal force or centripetal acceleration. So, −
𝑣𝜃

2

𝑟
 will be exactly 

equal to 𝑔𝑟. And that then you can just say that just taking the mod that 
𝑣𝜃

2

𝑟2 =
|𝑔𝑟|

𝑟
. You 

know also that 𝑔𝑟 should be radially inward directed, so that it is an attractive one, 

otherwise there is no meaning of rotation in this case. 

So, 
𝑣𝜃

𝑟
 will simply be equal to √

|𝑔𝑟|

𝑟
. And what is this? This is nothing but our well known 

Keplerian motion. So, a Keplerian motion basically gives a clear evidence of a sustaining 

differential rotation. 
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Because 
𝑣𝜃

𝑟
, if you again remember, that 𝑟Ω = 𝑣𝜃, so Ω is something which is depending 

on 𝑟, as we all know that 𝑔𝑟 is not linearly proportional to 𝑟, so there is no chance that 

there will be a cancellation between 𝑟’s in denominator and numerator and gives you 

something which is independent of 𝑟. So, we have a differential rotation. 
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But remember, this does not say that in this systems viscosity is not present. In general 

viscosity is present in such a system, but what happens that the role of the viscosity is just 

to induce a slow radial inflow of the mass rather than leading to a solid body rotation. So, 



if in other words the question is that, if you go to the equation −
𝑣𝜃

2

𝑟
= 𝑔𝑟 −

1

𝜌

𝑑𝑝

𝑑𝑟
, you will 

see that there is no term from viscosity. 
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And that is because of the simple fact that 𝑣𝑟 is so small that the viscosity term which 

should be 𝜇𝛁2𝑣𝑟 will be very very small and that is exactly the case where we are talking 

about neglecting the viscosity for at least for this rotation purpose. 

That means, the contribution of viscosity to counterbalance the net centrifugal force or to 

provide the necessary centripetal force, is negligible. So, viscosity is there, but its only role 

is to induce a slow radial inflow and that can be seen when you write the governing 

equation for the evolution of 𝑣𝜃. So that is the 𝜃-component of the Navier-Stokes equation, 

you should remember that. 



(Refer Slide Time: 23:22) 

 

Now, that was the case for the accretion disc or spiral galaxy. Now, what happens, if we 

consider the case of a slowly rotating star. Now, in this case, one part of the pressure 

gradient balances the gravity. So, in the previous case, the pressure gradient force was 

negligible, centripetal acceleration was provided by the gravity, and that led to the 

Keplerian motion thereby sustaining a differential rotation. 

Here one part of the pressure gradient, which is no longer negligible, balances gravity and 

the other part, along with the viscosity, counter balances the centrifugal force. 

Now, the question is that, when I am saying along with the viscosity, does it is mean the 

viscosity term 𝜇𝛁2𝑣𝑟? well this is also not correct. So, actually this is not the normal 

molecular viscosity or Navier-Stokes equation viscosity in direct sense which is 

responsible here, but there is another thing, it is called turbulent viscosity which I will talk 

when I will introduce the general properties of fluid under turbulent conditions.  

Then I will talk about the turbulent viscosity. So, turbulent viscosity is an equivalent 

viscosity coming from the virtue of the turbulent motion of the fluid. And this viscosity 

basically reduces the differential rotation and then finally leads to the system to a state of 

solid body rotation. 
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Now, turbulent viscosity just for your information is very very interesting and it is actually 

in general anisotropic, and when this anisotropy is very strong or non-negligible, then 

actually the differential rotation is not transferred or transformed into a solid body rotation. 

And that is exactly the case of our Sun. 

So, every time we will see something in the Sun, it will create a very important aspect for 

us or rather for our astrophysical knowledge, because Sun is our point of reference in some 

ways. So, for Sun, differential rotations are prominent. And actually, just to tell you, the 

signature of differential rotation including the spatial distribution of the angular velocity 

can actually be obtained using Helioseismology, which is the physics of the oscillation of 

the Sun. 

So, it has radial and non-radial modes. So, using this actually people have obtained some 

spatial profile of the angular velocities, and it is shown that near the poles the sun moves 

very slowly and near the equator it rotates faster or spins faster. 

And the discrepancy in the angular velocity or the angular speed is by 10% and actually it 

is sometimes it is more than 10%, so this is non negligible. So, this was the case where 

you can exactly see clearly differential rotation, and that is not the case for the slowly 

rotating stars where the turbulent viscosity is approximately isotropic. 



That means, if the turbulent viscosity let us say is represented by some matrix, by some 

second rank tensor, then the matrix will be symmetric. So, something like 𝜏𝑥𝑦 will be equal 

to 𝜏𝑦𝑥, for example. 
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And not only that then 𝜏𝑦𝑧 = 𝜏𝑧𝑦 and 𝜏𝑧𝑥 = 𝜏𝑥𝑧. Finally, you can see that the off-diagonal 

terms and the diagonal terms will be almost equal. 
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That means and the diagonal terms will also be very very close. That means 𝜏𝑥𝑥, 𝜏𝑦𝑦, 𝜏𝑧𝑧, 

will also be very close and only then you have this turbulent viscosity nearly isotropic. So, 

we will come to that point. So, you know from your knowledge that the viscosity comes 

from the off-diagonal part of the pressure tensor. 

So, what about turbulent viscosity? That I will discuss later. So just for your information 

if this is nearly isotropic, which is the case for slowly rotating star systems, then any 

differential rotation actually decays with time thereby leading to the final state of a solid 

body rotation. But this differential rotation can be sustained if the turbulent viscosity itself 

is strongly anisotropic and that is the case for the Sun. 
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Now, there is a very very important point; all types of differential rotations are not self-

sustaining, and what is the reason for that? Well, it depends on the dynamics and the 

structure of the system. So, a general analysis or general answer for this question is not 

very easy to obtain.  

However, by doing some very simple analysis we can actually determine some condition 

for which a fluid is stable under a differential rotation. That means, a fluid is already 

moving with a spatial gradient of angular velocity. Now, if we perturb the system, would 

the system try to get back its original configuration with the differential rotation?  

Let us say, the perturbation is done in such a way that the differential rotation state is made 

to tend towards a solid body rotation. Now, would that be a stable state? That means, would 

the system try to bounce back to its initial state or it would further move away!  

So, if it would try to get back its original position or original state then the fluid is called 

stable under a differential rotation. That means, the system prefers to be in a state of 

differential rotation. For simplicity, here we take an incompressible fluid which is subject 

to a differential rotation around an axis of symmetry. 
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So, now we are just taking two concentric rings; one is at 𝑟1, another is at 𝑟2, of course 

𝑟1 < 𝑟2. And we consider the fluid which is anywhere in this axisymmetric case and the 

fluid is only moving in the 𝜃 direction. 
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So, it has only azimuthal motion, so 𝑣𝑟 = 0, practically. This is the case for accretion disc 

as well and 𝑣𝜃 is the whole velocity. So, you can see that outer ring is moving with linear 

velocity 𝑣2 and inner ring is moving with linear velocity 𝑣1. 

Now, in our treatment, here we neglect the effect of body force, that is the gravity for the 

sake of simplicity. And one interesting study can be done to see what the effect the gravity 

gives. So anyways, we now consider two volume elements of equal volume, 𝑑𝑉, at 𝑟1 and 

𝑟2. 
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Now, since the system is only considered to have a cross radial motion or azimuthal 

motion, then 𝑣𝑟 = 0, and again writing then Navier-Stokes equation in cylindrical 

coordinates because of the axisymmetry we have finally, 
𝐷𝑣𝑟

𝐷𝑡
. So, 

𝐷

𝐷𝑡
 is nothing but the 

material derivative; that means, we are now concentrating on a fluid element or fluid 

particle.  

So, 
𝐷𝑣𝑟

𝐷𝑡
−

𝑣𝜃
2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
 . So, the acceleration of the fluid element is due to two things; one 

is the centripetal acceleration and one is the pressure gradient force.  

So, now the question is that the, how should it look like for our case? So, of course, you 

can see that for our case, because 𝑣𝑟 is 0, and you will say that the total centripetal 

acceleration is provided by the pressure gradient force. That is the conclusion from this 

component. 

 What is the conclusion coming from the other component? We simply say that for the 𝜃- 

component or the cross radial component, we have 
𝐷𝑣𝜃

𝐷𝑡
+

𝑣𝑟𝑣𝜃

𝑟
= 0 , all the other terms are 

0 either because they are depending on 𝜃 or they have other negligible things. 

So, now 𝑣𝑟 = 0 makes thing again simpler, which simply gives us 
𝐷𝑣𝜃

𝐷𝑡
= 0. So, that means, 

the linear velocity of the fluid element does not change with time. Is this clear? So, the 

velocity, the linear velocity with which one fluid element is moving is constant. 
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Again 𝑣𝑟 is equal to 0, what is the meaning of that? That means, 
𝐷𝑟

𝐷𝑡
 is equal to 0. This is 

the simple meaning of this. And if we combine the two, then we can write that 
𝐷(𝑟𝑣𝜃)

𝐷𝑡
= 0. 

So, for a particle not only 𝑣𝜃, not only 𝑟, but 𝑟 times 𝑣𝜃 is also constant in time, and this 

is nothing but the mass density of the angular momentum, angular momentum per unit 

mass. We call this 𝐻, and this is constant along the trajectory of a fluid element. So, this 

is a Lagrangian invariant, because we are now talking in terms of the Lagrangian 

derivatives. 
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Now, what is the kinetic energy density at any position? that is the half times the density 

times the velocity square and the velocity means only 𝑣𝜃. So it is nothing but equal to 

1

2
𝜌 (

𝐻

𝑟
)

2

. Because 𝑣𝜃 is nothing but 
𝐻

𝑟
.  

So, before doing any change we calculate the total kinetic energy of those two fluid 

elements, and they will be nothing but 
1

2
𝜌 [

𝐻1
2

𝑟1
2 +

𝐻2
2

𝑟2
2 ] 𝑑𝑉, simple. They do not have any 

other force like body force that is neglected over here. So, the only energy is the kinetic 

energy. 
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So, now you can simply say that we make an interchange of those two fluid elements, 

which was primarily at 𝑟1and 𝑟2, where 𝑟1 < 𝑟2 once again, if in case you forget. 

Then what happens? at the new position they will have the total kinetic energy 𝐸′ =

1

2
𝜌 [

𝐻1
2

𝑟2
2 +

𝐻2
2

𝑟1
2 ] 𝑑𝑉 . Now look, these particles they are just picked and they are put in a new 

position. So they will come with their instantaneous angular momentum density, which 

they had before the perturbation. 

So, we will see that if they are just picked and they are just put in the new positions, would 

they suit the new position or not, that is the question. So, if we simply pick them from their 

original positions and swap between them, in terms of the position, but they are always 

associated with their original angular momentum. Then, the question is that would that 

system be stable. How would the system respond? 
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Of course, the system will be stable, one can easily understand, if 𝐸′ > 𝐸. Because, if the 

systems final energy is less than the initial energy the system would always try to go to the 

final state and then it will try to move further away from the initial state. 

But, only if the new state has an energy, which is greater than that of the original state then 

the system would try to bounce back to its original state and that is the stability. So, for 

stability here, this can be confusing sometimes, that here when we talk about the stability 

that means the stability with respect to the differential rotation. 

So, for our system the stability will be attained if the energy in the final state would be 

greater than the energy in the initial state. Because we want the system to get back to its 

initial state and that should be the state with less energy. And if it is true, then you can 

write that this is simply equivalent to writing 
𝐻1

2

𝑟2
2 +

𝐻2
2

𝑟1
2 >

𝐻1
2

𝑟1
2 +

𝐻2
2

𝑟2
2 . 

And then I take this all the terms with 𝐻1
2 in one side and all the terms with 𝐻2

2 in on the 

other side, we have 𝐻1
2 (

1

𝑟2
2 −

1

𝑟1
2) > 𝐻2

2 (
1

𝑟2
2 −

1

𝑟1
2). Now, since 𝑟2 > 𝑟1, then (

1

𝑟2
2 −

1

𝑟1
2) is a 

negative quantity, but 𝐻1
2/𝐻2

2 is positive as they are squares. So, cancelling the common 

negative quantity from both sides, we have 𝐻1
2 < 𝐻2

2 and that is the condition for stability. 

Whereas, the opposite condition 𝐻1
2 > 𝐻2

2 will be the case for instability. So, if you write 

in terms of for example, Ω and 𝜃, so what was H? If you remember, 𝐻 was nothing but 



𝑟𝑣𝜃, so for stability that simply says, 𝑟1
2𝑣𝜃1

2 < 𝑟2
2𝑣𝜃2

2  . Now, what is 𝑣𝜃? It is nothing but 

𝑟Ω. 
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So, that would simply imply 𝑟1
4Ω1

2 < 𝑟2
4Ω2

2. So, at differential way, if we just change now 

those two volume elements between two concentric layers, which are infinitesimally close 

to each other than an equivalent way of writing this, because this is true for any layers 

𝑑

𝑑𝑟
(Ω2𝑟4) > 0. 

So, this is known as the Rayleigh’s criterion for stability. So, sometimes we say this is 

Rayleigh’s criterion of centrifugal stability and the opposite condition is known as the 

Rayleigh’s criterion for centrifugal instability. 

And Rayleigh in the year 1917, for the first time he derived this one. So, you see that here 

in this lecture by a very simplistic condition or a simplistic analysis process, we have not 

done much formal things, just using very simple axisymmetric cases, steady condition, 

incompressibility, using all these assumptions, finally, what we concluded? 

That not every differential rotation is auto sustained or self sustained. So, if the Rayleigh’s 

stability criterion is satisfied then once a differential rotation is established in a system, it 

will be there, it will not be decayed. Now, if the differential rotation is not sustained, then 

what is the fate of that? then this is the criteria for instability, 



and that means, the differential rotation is not sustained, that means the fluid does not 

prefer to be in a state where different layers are moving with different angular velocities. 

And then what is the fate, what is the destiny of that system? To be in the state of solid 

body rotation. 

Of course, Sun is not like such a system, because in Sun we have sustained differential 

rotations. In the next lecture, we will discuss a bit more about these rotations and also we 

will try to understand how such a system can be studied from a non-inertial frame of 

reference. 

Thank you very much. 


