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So, we continue our discussion on the Instabilities in the Interface of two fluids, and as
previously, we saw that finally using plane wave type of solution for the perturbations we got

2 equations,
i(—w+ kU)A = —kC,
i(—w+ kU")A = —kC'

These 2 equations are obtained from substituting in the basic equations.
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Where we equated the Eulerian velocity component in the z direction, and the Lagrangian
velocity component of a fluid particle situated at the same position, both for the fluid above

and for the fluid below.
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If you remember correctly, then using all these things finally, we got these above equations
and we said that we have now 2 equations, but 3 unknown constants. So, of course, we

cannot completely eliminate 3 constants from these equations. So, we need any other

supplementary or additional equation or relation between this 4, C, and c.

So, this condition is obtained by considering that the pressure is continuous across the
interface, this is a very crucial consideration. If pressure is not equalized across the interface,
then the interface will be ruptured or the distorted that we do not know. There can be smooth
perturbations, there can be curves, but very small perturbation. So, it cannot rupture or it
cannot damage the interface that the interface should not be affected by the whole
perturbation process, that is the whole story behind it.

So, the pressure should be continuous and if the pressure is continuous then we have to look

back when we derived some generalized type of Bernoulli theorem.
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If you remember, this type of thing in the equation
_2 PPy, = F(t i
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And we said that this is true for any points in the flow field in our case, because the vorticity

is identically O for this fluid.
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Of course, here do not forget that p is just a constant and g is the gravitational acceleration &,

is the displacement.

So, this is actually giving the proxy for the gravitational potential. So, not proxy | mean this
IS now, represents the term of the gravitational potential.
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So, you can easily also understand that for any point that is true. Now, we are interested for
our current analysis at z is equal to 0, that is the interface and we can write the pressure

balance equation.

So, for pressure balance equation this is the pressure —p[ + +g€1] + pF(t), at

interface due to the fluid below the interface and this —p [ + — + gfl] +p'F'(t) is

the pressure at interface due to the fluid above the interface.

6(91 dp,’

o[22+ %+ | =~ [- 2+ kg 4 (F)

But here actually, a part of the pressure with the unprimed coordinates is equal to a part of the
pressure with prime coordinates plus K and this K contains pF(t) — p'F'(t). These algebraic
steps, you can do easily, please check that. Now, if we suppose that the perturbation is only
considerable near the interface z is equal to O, then of course, for z tends to infinity whether

this is plus infinity or minus infinity.

All the ¢, (pl' and &, would vanish and then basically, what we get is the original or initial

steady state. That means, v is equal to U and v’ is equal to U’. So, they are constants and all

the part of quantities are 0.



So, now, you can just do a calculation and you can simply see that at initial condition or

initial state K should be equal to
K=-pU%—-p'U" (G).

Now, remember what is the total velocity in general that is the initial velocity Ux — ﬁwl, this

is the part of the velocity v, if you want to write like this. Then the square of this will simply

2 _opydes
be equal to U~ — 2U P
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Of course, with a minus sign here.
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Now, replacing the expression of v? in equation (F), what we can get? Because, here for
obtaining this one you have to use the expression of K, first write the expression of K which

you obtain from (G) and finally, you replace v2.
If you write, you will see that the term with U2 in K will be cancelling the terms in U2 which

comes due to v2 and v'2. If you do that finally, you have a compact relation like

P28yt gt - -2 g



Because, when the interface is plucked, let us say from here to here, both the fluid particles
which are infinitesimally above and below the interface both are lifted by a same distance &,
and also both are lifted against equations (G). So, that is why this term is similar, but of
course, do not forget that this is multiplied with p" and this is multiplied with p. This type of

subtleties should not be neglected.

Now, finally, if we write the trial solutions in equations (C) and (D), and if we replace all the
solutions in our newly obtained condition due to the pressure balance at the interface. We

finally, get a relation super interesting relation like
p[—i(—w + kU)C + gA] = p'[-i(—w + kU')C" + gA] )
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So, finally, our purpose is solved we have obtained another algebraic relation between C, A
and C'.

So, now, we have 3 equations this one equation (J) and the other 2 are here in equation (E),
and now, we can totally eliminate all these constants of integration, I mean they are not
constants of integration, all these constant amplitudes of the perturbation to obtain, the
relation between the frequency of each Fourier mode and the corresponding wave numbers.
So, if you do that correctly. This is a doable homework a bit 2 or 3 steps are there, but if you

do systematically you can easily get there.

So, this dispersion relation finally, comes out to be



p(—w +kU)* + p'(—w + kU')* = kg(p — p") (K)

So, we just think that if the two fluids are having very matching close density, then this is the

order of 0, then what happens to this dispersion relation.

For example, if U and U’, they are same then what happens to this dispersion relation ok? So,
think whenever in physics you obtain some analytical relation try to understand different type
of limits, if your analytical result is correct. There is no problem in calculation or in
assumptions, then it should give you correct results or intuitive results in the known limits.
So, that I leave for you to check and verify. If you have any question, of course, we can

discuss in one of the sessions.

So, this equation number (K) is the parent equation of all our following discussions, this is

nothing but the dispersion relation of the linear wave mode.
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If the dispersion relations frequency can be written in this way as equation (L), of course,

you can easily understand that if we consider that the wave vector is given then this is

nothing but, quadratic equation for w, and w can be written in this way that% is equal to

w _ pU+p'U" g (p=-p"\ pp'(U-U")?
o mt ) ey g

k (p+p") — “k \p+p’ (p+p)?

Finally, you can easily check that the w at least that can be real.



So, whether this is positive or negative that actually can be absorbed in dispersion relation
with k sometimes. So, that is another thing but at least here for this part there is no chance for
w being complex this is a real part. Now, the question that whether this will give us a stable
solution or not, for that, we have to check under which condition w has a real value, if it is a

real value then we have a stability condition.

That means, the system responds in terms of linear wave modes, if w has a complex part,

p—p’) _ pp'(U=-U')?
pt+p’ (p+p")?

there is a square root and there are 2 terms. So, the interplay of the 2 terms will tell us that

which should come from this part [%( 1*/2, of course, you understand that

whether this is imaginary or this is real.

So, if this has an imaginary part w, then the system will lead to an instability, of course,
linear instability. Now, we just using this equation, we will just discuss very briefly the

following interesting cases.
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So, one case is known as the Surface gravity waves, so, that means that we have two fluids,
which are initially at rest. That means, both U and U’ are 0 and the lighter fluid is resting on
the heavier fluid. So, p is greater than p’. So, p’ is the fluid above. So, this one is lighter this

one is heavier.

So, the dispersion relation will be



w _ g (p=p'
=i () M)
Of course, this will be positive because square root of this positive thing will be a real thing.
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So, in this case, we will see that the system is at rest, two fluid system was initially at rest
actually, gives birth to a linear wave mode. So, any weak perturbation caused to this interface
to fluid interface would give birth to a linear mode, whose phase velocity is or the dispersion

relation is given by equation (M).

So, finally, you can see that the phase velocity of the mode is just this equation (M). So, for
all k, we do not care what is the value of k, w is always real, since, p is greater than p’. Now,
it simply says that the disturbance, in this case, moves on the interface in the form of a linear
wave mode, which is called the surface gravity wave, and here, you can see for this mode

unlike the sound speed the phase velocity actually depends on k.

So, this is a Dispersive wave. So, the phase velocity is not a constant, it depends on k. So,

this is the story of one case.
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Now, if we just consider a very special case, what | will say that it is always good to check
the limits. For example, air water interface, so where p’ is very less than p, the density of air
is very less than density of water, air is compressible but it is true that it is fairly

incompressible with respect to the other gaseous thing.

So, reasonably we can approximately use our current framework that is true. So, if we do that
then finally, what happens this both p — p’ and p + p’ both will be approximately equal to p

and finally, this will get cancelled and we will have simply

%ziﬁ=> w =t/ gk (N)

Now, surface gravity waves are mainly important for the study of ocean atmosphere
interface, that is in oceanography. For the astrophysical framework, we can have also
interesting thing with the surface gravity wave. Because, in lower solar corona, it is observed

actually surface gravity waves are there and it is true that then actually,

We cannot model the whole thing using a neutral fluid, then plasma comes into play and the
surface gravity waves will be a generalized form of this surface gravity waves which will be
the magnetized or magneto acoustic surface gravity waves which | will talk a bit later, when |

will talk about like magneto hydrodynamic waves.



After that another very interesting thing, so this was the story of a stability condition where
the system responds in terms of a linear wave mode. Now, we see the inverse situation, but
always with the same initial condition, by definition, this is another condition, which is
known as Rayleigh Tylor instability or RT instability. So, the initial condition is exactly the

same, that means, U is equal to U’ is equal to 0.

But one thing is changed there now, whenever you have two fluids then the relative
configurations or the relative situation of one fluid with respect to the other is very important.
So, here this is true that this is exactly equal to the previous case, but now, p’ is greater than

p. So, in that aspect the initial condition is not exactly the same.

So, p — p' must be negative and so, w should be imaginary in the equation (M). So, this part

will add finally to the instability, and this is known as the Rayleigh Taylor instability.
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Now, just instead of seeing this as a very exotic thing, just think very clearly that let us say |
make somehow by force or something clamping or some set up two fluids at rest, of course,

in the Earth’s gravity field.

Now, they are rest vertically, so, the lighter fluid is below and the heavier fluid is on the
upper side. What will happen if we just lift the constraint? So, this heavier fluid will come

down and this one will try to go in right, of course, not in the convective manner.
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But, in general, this fluid is heavier fluid actually, comes down in the structure of fingertip
type of thing. So, it penetrates this fluid gradually, and the final destination is finally trying to
goes down and below the lighter fluid.

Of course, this is very interesting case for the fluids in gravity field which was observed for
gravity field by Rayleigh in the year 1883. But this instability can also be found if a lighter
fluid accelerates against a heavier fluid. So, the gravity fluid can make gravity field can be
any other accelerating field right, of course, the accelerating field is acting as a conservative
body force field that is something very important.



(Refer Slide Time: 23:20)

* Besides Fluide in growity freld, 1805 inetolor liby cam be
. (Royligh \rad)
“?’“”-‘M“\ \Q o Uahh/r :?Lu.icl aceslexoten aaal“&\‘aﬁmn&w

Flod (Tougler, \150). GV%

=

* Tu Ha \i'bva vullad TM 0’.? RSIATMMVQ Q/XF\OS‘M,
(e before HRe Sedov—TaAalar YL%!:W\L:) 5 TRe ofecked
3“" 8&)& onk 0P e canhre of w‘:}.os{m amd “emdato
pile up i athuin shald beind the intexrPace CGM\%()?S)

\\\\‘””“ % Sp Ahe atbuakivn b eqnivaleat

\\ (\r\" to @ two £lutd Agstean wihere

\ (2 He L(ak}‘or Plud h bedow e

} ™~ howierfiid  Reovier floid:

Otherwise, that cannot be written as a gradient of some potential function and the generalized
form of the Bernoulli equation cannot be proved easily. That was done by Taylor 67 year
later in 1950.

So, this is the same Taylor, who worked on the Sedov-Taylor instability during the supernova
explosion | mean, sorry, using the blast waves during the second world war for the atomic
bomb explosion. Now, this type of Rayleigh Taylor instability is much importance for the

astrophysicist, because in many instances one can see RT stability.

For example, | here just want to mention one very useful, which we have already discussed
that is the very initial phase of supernova explosion. When the expression just takes place in
the explosion does not enter into the self-similar phase that is the phase of Sedov-Taylor,
before that the ejected gas gets out of the center of the explosion and tends to pile up in a thin
shell behind the interface. That was observed by Gull in the year 1975.

So, the situation is equivalent to a two-fluid system where the lighter fluid is below the
heavier fluid and the acceleration is outward. So, the acceleration is basically due to the
energy of this fluid. So, the fluid is now piling up here, this is the interface and there is very

dilute intense ambient medium.
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If you just see that this acceleration is acting in this direction, then it is exactly equivalent to
saying that the heavier fluid is above and the lighter fluid is below. So, we can expect, of

course, a Rayleigh Taylor type of instability and actually they can see that.

(Refer Slide Time: 25:33)

Heavy Fluid
B2l SN ) 5
2 ol N ( .
o I } { ® Liveseu
gl i A -
< ¢ 2 Raltzor,
Light Fluid ap1s)
(Wieland
et o)
R0 " N s SLOH)
3 RS
(a) Crab Nebula (b) Superngya Simulation

So, here, in this slide, I will try to show you different observational instances of Rayleigh
Taylor instability. So, one is taken from a paper by Livescu and Baltzar in 2015. So, for a

numerical simulation, you can see that the heavier fluid basically becomes penetrating in the



lighter fluid, now, you see this brownish fingertip. So, whenever you see this type of

fingertips are coming, this is a clear signature of Rayleigh Taylor instability.

Of course, in this case the two fluids should be at rest initially or very low velocity, otherwise
this is not possible. This is a picture by crab nebula where you can also see finger type of
structures to the ambient dilute medium, which can also indicate towards a possible

instability.

Now, finally, for the supernova simulation, this is a very early phase supernova simulation,
where this is not self-similar and spherically symmetric till now, and you can see that the
blast wave material actually tries to penetrate to the very dilute ambient medium just by the

virtue of RT instability. This was taken from a paper, recent paper by Wieland et.al. 2019.
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So, the last one is called Kelvin Helmholtz instability. So, what is that? For Kelvin Helmholtz
instability, U and U’ are not 0, but if they are not 0 and they are equal then again you can see
this U — U’ term will be 0. So, we will always have some stability, there is nothing

interesting.

So, we will not only make them non zero, but make them different and p’ is less than p. So,
the system should be already stable in terms of Rayleigh Taylor instability. So, it is the
heavier fluid, at the bottom and the lighter fluid is on the top.



But now, both the fluids are flowing with non-zero velocity, that is the initial steady

condition, but with uniform velocity. Then what happens? Then of course, this will have an

—p! Terr—g1IN\2
imaginary part only, when this part [Z (P p ) _ pp'(U-UYH

ol e Ty 1*/? is negative and that is simply

. g (p=p
true when this part k(p

T2y
+—p,) is less than this part 2200=Y)

(ipZ So, just by algebraic

manipulation, you can see that p + p’ will cancel out.
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Finally, we have

pp'(U—=UY? > (p* = p'H)2,

and then the k should be there, till now we did not have any k dependence in the criterion of

the instability. Now, we will have a k dependence.

(0> = p'")g

k>——F ==
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So, If k is greater than this value, I will have a Kelvin Helmholtz type of instability and
Kelvin Helmholtz type of instability is also important for solar physics. Maybe, I will come
to that later and also in the case, where you can see that some flowing river and on just on the
river surface, some wind is also blowing, then the surface is actually undulating, and that is

the clear signature of Kelvin Helmholtz type of instability.



In case of astrophysics, Kelvin Helmholtz type of instability can be seen in extra galactic jets,
where some fluids are spitted by a galaxy from very localized region in a galaxy and tries to
mix or tries to go to the very dilute intergalactic medium. So, here you can see that k is
greater than some critical value means the length scale of the perturbation should be less than

to some minimum value.

For the instability, | should be less than some maximum value. So, of course, one very
important thing in whole treatment, we have taken into account the incompressibility for
water and air surface we have discussed, but we have neglected the effect of surface tension.
Actually, the introduction of surface tension majorly modifies the results and you can see that
the k will have also the lower bound, then actually U — U’ should have another type of bound

depending on the nature of the surface tension.

So, this type of exercise you can actually see on internet, how surface tension can actually
modify Kelvin Helmholtz instability, how magnetic field can modify Kelvin Helmholtz

instability, those things are subject of very interesting and ongoing research.

So, that is something | can inspire you to think and just try to do some more general
analytical approach. So, in this lecture, we have seen analytically, how to tackle the
instabilities or the very weak perturbation and the response of the two-fluid medium. Instead,
to this perturbation whether in terms of linear modes or in terms of instability and we actually
also discussed that why and in which circumstances Rayleigh Taylor instability, Kelvin

Helmholtz instability this type of two-fluid interfacing stabilities are important.

In the next discussion that | will give next week, | will talk about a very interesting topic
which is known as the Physics of Stellar Oscillations, and actually, you can see it is observed
that the luminosity of the stars including the sun, they are oscillating. So, that the luminosity
changes periodically, and in this way actually it is called the oscillation of the sun or the

oscillation of the corresponding star.

In fact, one can easily understand by proper analysis that there is a proper mechanical
oscillation type of thing of the Taylor body corresponding to the periodic change in the

luminosity. So, that I will discuss in the next week.

Thank you very much.



