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Hello, and welcome to another session of Introduction to Astrophysical Fluids. In this 

session, we will discuss the physics of Jeans Instability. Jeans instability is one of the most 

important instabilities in the framework of astrophysics, because often the stars and the 

galactic chunks are believed to have been formed as a result of Jeans instability. Now, what 

does Jeans instability mean? 

So, previously if we remember that we have seen, in the absence of any body force and 

viscous effect, any weak perturbation of first order in a polytropic fluid for which the 

pressure is just only a function of density always and actually has a relation like 𝑝 is equal to 

some constant times 𝜌𝛾. This type of fluid always leads to an acoustic wave mode which 

repairs the perturbation, given the initial state is a static, I mean the state was in hydrostatic 

equilibrium.  
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Now, in the context of astrophysics, often we can see systems under the influence of 

gravitational field. So, we can no longer neglect the body force effect. So, the body force and 

viscous effects both were neglected in the previous case, where we just saw the emission of 

sound waves or I mean the formation of the sound waves in order to respond to any weak 

linear perturbation made to the system. But, in astrophysics we have to consider the body 

force which is the gravitational field.  

If the system is with a large mass, like a star forming cloud, for example, then the system is 

acted by its self-gravity. So, the system is also acted, I mean the body force is nothing but its 

own gravity, own field of gravity.  

So, now, the question is that does such type of system also lead to the stability and linear 

mode of like sound wave or something like that or this leads to any type of instability, in this 

case even if one starts from a hydrostatic steady state? That is the question. 
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Now, in order to answer to this question, let us first consider the set of governing equations. 

So, the set of governing equation the 1st one you all can now recognize this is the famous 

continuity equation 
𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ . (𝜌𝑣 ) = 0. This is the famous Euler equation, of course, because 

we have neglected the viscosity. So, 
𝜕�⃗� 

𝜕𝑡
+ (𝑣 . ∇⃗⃗ )𝑣 = −

∇⃗⃗ 𝑝

𝜌
− ∇⃗⃗ 𝜑, here as you can easily see 

that we have neglected the viscosity.  

The 3rd equation is the Poisson’s equation for gravitational field. So, ∇2𝜑 = 4𝜋𝐺𝜌, here you 

can easily see that 𝜑 is the gravitational potential. So, 𝑔 which is the gravitational intensity 

can be written as −∇⃗⃗ 𝜑. 
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Now, Jeans assume that the unperturbed state is a uniform fluid medium with infinite extent. 

This state is uniform means the density and pressure they are constant everywhere, because 

we have assumed a polytropic which is a special case of a barotropic fluid, so where 𝜌 is a 

function of 𝑝 only. So, if 𝜌 is constant as 𝜌0 then 𝑝 is also having constant value which is 

equal to 𝑝0.  

The fluid is at rest that means, 𝑣0 is equal to 0. So, that is the unpartnered state. Now, you can 

see that if you just insert this initial condition in this set of equations, you can easily see that 

the initial state should always be steady that I said at the very beginning and in addition it is 

now uniform and static. So, 
𝜕

𝜕𝑡
 are all 0, 𝑣 is 0. So, this is the continuity equation trivially 

vanishes.  

This term is nonzero ∇⃗⃗ 𝑝0 + 𝜌0∇⃗⃗ 𝜑0 is equal to 0, so that is the unperturbed state. So, if our 

system is steady and static then what happens?  

So, finally, from that you can write 

∇⃗⃗ 𝑝0 = −𝜌0∇⃗⃗ 𝜑0, and ∇2𝜑0 = 4𝜋𝐺𝜌0.                (a) 

So, that is the Poisson equation. Now, my question, is it looks fine, right. Now, the question 

is that if you see in depth is it still, ok? Well, there is a catch. 
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The thing is that this is not fine, that means, the equations are not auto-consistent, self-

consistent. Why? Because, if you now consider for that the medium is uniform, then the 

medium will have a constant nonzero value for 𝜌0. So, 𝜌0 will be nonzero, but constant. 

If we have barotropic or polytropic fluid then 𝑝 is also constant, so 𝑝0 is constant. So, 𝜌0 

constant means 𝑝0 constant and 𝑝0 constant means ∇⃗⃗ 𝑝0 is 0. If 𝜌0 is nonzero and ∇⃗⃗ 𝑝0 is 0, 

then ∇⃗⃗ 𝜑0 is also 0, that means, 𝜑0 is a constant. So, if ∇⃗⃗ 𝜑0 is 0, now you remember 

divergence of something which is 0 is also 0 and that means, that 4𝜋𝐺𝜌0 is 0, that means, 𝜌0 

itself is 0. 

So, we started by saying that we have a uniform medium, so 𝜌0 is constant, but strictly 

nonzero, because the matter should be there. But now, we end up by saying that 𝜌0 is 0 

everywhere. So, what is the problem? The actually the initial unperturbed condition is not 

satisfied by a uniform infinite barotropic medium. That means, that up to this unperturbed 

equation there is no problem in this equation, but after that this initial unperturbed steady 

static condition is not satisfied by a uniform medium.  

That means, whenever you make the assumption that 𝜌0 is constant and nonzero, then the 

problem is started, and this known as Jeans swindle. Jeans did not realize the fact, but he was 

the first one to address this problem analytically and we will come to this later and he 

actually somehow found qualitatively the same result.  



So, what is the way out? In fact, one has to first solve the equation and then should consider 

the perturbation around it. So, first we have to solve these set of equation and to check that 

which type of functions actually satisfies this set of equation, and we will see that 𝜌0 is 

constant and nonzero can never be a solution of this equation. So, that is the proper way. 
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But very interestingly, historically, when Jeans finally analyzed his thing, it is found that the 

stability condition what Jeans obtained, actually remains qualitatively the same if we do it 

properly from a well-defined initial state. So, that is the proper way of treating that. 

Then, in case you can just remember Lane–Emden’s equation, actually, in this case one has to 

solve Lane–Emden’s equation type of thing, I mean which is for a spherical system this type 

of equations can be cast into this Lane–Emden type of equation, and one can actually see 

solution of this problem in a proper manner.  

But here for this discussion just for the sake of simplicity, we study the original treatment by 

jeans. That means, we will use the Jeans swindle method. Now, after perturbation what 

happens? So, ok why we are following this Jeans swindle method, because of two reasons, 

first one is that this is historically important to know what Jeans did and finally, it is simple 

and gives qualitatively the same result as that of a mathematically properly done method. 



Now, after perturbation what happens, 𝑣 is now becomes 𝑣1, 𝜌 is now becoming 𝜌0 + 𝜌1 and 

𝑝 is 𝑝0 + 𝑝1 and finally, 𝜑 is also equal to 𝜑0 + 𝜑1. Again, we obtained the linearized 

equations as 

𝜕𝜌1

𝜕𝑡
+ 𝜌0∇⃗⃗ . (𝑣1⃗⃗⃗⃗ ) = 0 

𝜌0

𝜕𝑣1⃗⃗⃗⃗ 

𝜕𝑡
= −𝐶𝑠

2∇⃗⃗ 𝜌1 − 𝜌0∇⃗⃗ 𝜑1 

∇2𝜑1 = 4𝜋𝐺𝜌1 

Where 𝐶𝑠
2 is nothing but the polytropic sound speed. Now, you know this is nothing, but 

𝛾𝑝0

𝜌0
.  
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Now, we have 3 equations and 3 perturbation variables, one is 𝜌1, one is 𝑣1, one is 𝜑1. The 

𝑝1 is actually replaced by the polytropic condition by 𝜌1. In the next step, we consider very 

simply plane wave solution for all weak perturbations. So, 𝜌1 will be equal to some 𝜌10 

which is the amplitude part 𝑒𝑖(�⃗� .𝑟 −𝜔𝑡).  

This is the plane wave type of solution for the fluctuations. Another way of saying is that as 

they are linear then we can think them to be composed of Fourier components and then we 

take one of the Fourier components. Another way just to say that, we are assuming that plane 



wave solutions. Where, 𝑣1 will be equal to some 𝑣10 𝑒𝑖(�⃗� .𝑟 −𝜔𝑡), and then 𝜑1 will be equal to 

𝜑10 𝑒𝑖(�⃗� .𝑟 −𝜔𝑡). 
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Then finally, we replace all these 3 values in all these 3 expressions. This plane waves type of 

solutions and we will obtain that  

−𝜔𝜌10 + 𝜌0�⃗� . 𝑣 10 = 0                                                 (b) 

−𝜌0𝜔𝑣 10 = −𝐶𝑠
2�⃗� 𝜌10 − 𝜌0�⃗� 𝜑10                                  (c) 

−𝑘2𝜑10 = 4𝜋𝐺𝜌10                                                         (d) 

So, we finally, have a set of 3 algebraic equations with 3 unknowns 𝜌10, 𝑣10, and 𝜑10. Of 

course, we have 5 unknowns because, 𝑣10 is a vector quantity, so you know that actually we 

have 5 scalar equations and 5 unknowns.  
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Now, take a dot product of equation (c) with �⃗� , see if we just take �⃗�  dot in the both sides of 

(c), then finally, we eliminate �⃗� . 𝑣 10 from (b).  

Finally, we get another expression which is the expression number (e) which is  

𝜔2𝜌10 = 𝐶𝑠
2𝑘2𝜌10 + 𝜌0𝑘

2𝜑10                               (e) 

Finally, I have from (d) and (e). I have got rid of 𝑣10 variable. So, combining, we get 

𝜔2𝜌10 = 𝐶𝑠
2𝑘2𝜌10 − 4𝜋𝐺𝜌0𝜌10 and then just rewriting we can get  

𝜔2 = 𝐶𝑠
2(𝑘2 − 𝑘𝐽

2)                                                   (f) 

Here, I define this 𝑘𝐽
2 such that 𝑘𝐽

2 is equal to 
4𝜋𝐺𝜌0

𝐶𝑠
2 , and this is known as the Jeans wave 

vector, and here you can actually see this is nothing but the dispersion relation, for the plane 

wave solution corresponding to the perturbation. 
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Now, clearly when 𝑘 is greater than 𝑘𝐽, then 𝜔 is real, because 𝜔2 is positive and the system 

will respond through linear wave mode. If 𝑘 is less than 𝑘𝐽, then 𝜔 is imaginary and the 

system then will be led to instability and which is called the Jeans instability. 

Now, before discussing further, let us try to understand what leads to instability here actually. 
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So, whenever the density of some region under cell gravity is increased the fluid pressure 

gradient would try to repair it, just like in a normal compressible fluid. But, when the density 



gets higher, it creates a stronger gravitational field, self-gravity field will be increased, that is 

true by Poisson’s equation.  

That leads to the further rise in density, and that actually leads to an instability due to 

gravitational collapse. In fact, if the size of the perturbation is greater than the Jeans 

wavelength which is defined as 𝜆𝐽 which is nothing but 
2𝜋

𝑘𝐽
, then the increase in self gravity 

dominates over the increase of pressure and which is relating to the Jeans instability. 
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Now, analogically for the size, we have there is a critical value of mass, for which Jeans 

instability takes place only if the mass overcomes or mass dominates over the value of 𝑀𝐽, 

which is nothing but 
4

3
𝜋𝜆𝐽

3𝜌0. This is called the Jeans mass.  

Now, that 𝑀𝐽 is equal to  

𝑀𝐽 =
4

3
𝜋5/2(

𝛾𝑘𝐵𝑇

𝐺𝑚
)3/2

1

𝜌0
1/2

 

 So, 𝑀𝐽 is proportional to 𝑇3/2 and it is also proportional to 
1

𝜌0
1/2. Why is that, just try to 

understand physically? That is my question to you. 
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So, in a nutshell, if a perturbation in a uniform gas involves a larger mass than 𝑀𝐽, then the 

local gravitational collapse will set in and that actually, leads to Jeans instability, thereby 

fragmentation of the whole system into peace. So, local gravitational collapse basically 

makes the total continuous mass system to be fragmented, if you can understand the whole 

picture. 
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The stars and galaxies are believed to be the outcomes of such instability, but instead 

interstellar mass with hydrogen atomic density, nearly one particle per cubic centimeter at 



temperature 100 Kelvin gives a Jeans mass which is of the order of 8 × 1038 gram, which is 

much larger than the typical mass of a star, which is of the order of 1038 gram. It is then 

assumed that the Jeans instability first breaks the interstellar matters into larger galactic 

chunks, and then further breaking by other mechanisms gives starts. 

So, this is not just one step, Jeans instability which can gives us the usual stars. But this is a 

two-step process. One step is the bigger interstellar matter, then this breaks into chunks, 

larger chunks and from that larger chunk that is, of course, by Jeans instability. But then from 

larger chunks how they get further fragmentation, that is another interesting issue in 

astrophysics. So, that is all about Jeans Instability. 

Thank you very much. 


