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Hello, and welcome to another session of Introduction to Astrophysical Fluids. In this
session, we will discuss the physics of Jeans Instability. Jeans instability is one of the most
important instabilities in the framework of astrophysics, because often the stars and the
galactic chunks are believed to have been formed as a result of Jeans instability. Now, what

does Jeans instability mean?

So, previously if we remember that we have seen, in the absence of any body force and
viscous effect, any weak perturbation of first order in a polytropic fluid for which the
pressure is just only a function of density always and actually has a relation like p is equal to
some constant times p¥. This type of fluid always leads to an acoustic wave mode which
repairs the perturbation, given the initial state is a static, | mean the state was in hydrostatic

equilibrium.
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Now, in the context of astrophysics, often we can see systems under the influence of
gravitational field. So, we can no longer neglect the body force effect. So, the body force and
viscous effects both were neglected in the previous case, where we just saw the emission of
sound waves or | mean the formation of the sound waves in order to respond to any weak
linear perturbation made to the system. But, in astrophysics we have to consider the body

force which is the gravitational field.

If the system is with a large mass, like a star forming cloud, for example, then the system is
acted by its self-gravity. So, the system is also acted, | mean the body force is nothing but its

own gravity, own field of gravity.

So, now, the question is that does such type of system also lead to the stability and linear
mode of like sound wave or something like that or this leads to any type of instability, in this

case even if one starts from a hydrostatic steady state? That is the question.
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Now, in order to answer to this question, let us first consider the set of governing equations.

So, the set of governing equation the 1st one you all can now recognize this is the famous

continuity equation Z—’t’ +V. (pv) = 0. This is the famous Euler equation, of course, because

-

we have neglected the viscosity. So, % + (. V)ﬁ = —V?p — Vo, here as you can easily see
that we have neglected the viscosity.

The 3rd equation is the Poisson’s equation for gravitational field. So, V2¢ = 4nGp, here you

can easily see that ¢ is the gravitational potential. So, g which is the gravitational intensity

can be written as —Ve.
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Now, Jeans assume that the unperturbed state is a uniform fluid medium with infinite extent.
This state is uniform means the density and pressure they are constant everywhere, because
we have assumed a polytropic which is a special case of a barotropic fluid, so where p is a
function of p only. So, if p is constant as p, then p is also having constant value which is

equal to p,.

The fluid is at rest that means, v, is equal to 0. So, that is the unpartnered state. Now, you can
see that if you just insert this initial condition in this set of equations, you can easily see that

the initial state should always be steady that | said at the very beginning and in addition it is

now uniform and static. So, % are all 0, v is 0. So, this is the continuity equation trivially

vanishes.

This term is nonzero Vpo + po_ﬁ(po is equal to 0, so that is the unperturbed state. So, if our

system is steady and static then what happens?
So, finally, from that you can write
VPo = —Pov)fpo, and V2@, = 411G p,. (a)

So, that is the Poisson equation. Now, my question, is it looks fine, right. Now, the question
is that if you see in depth is it still, ok? Well, there is a catch.
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The thing is that this is not fine, that means, the equations are not auto-consistent, self-
consistent. Why? Because, if you now consider for that the medium is uniform, then the

medium will have a constant nonzero value for p,. So, p, will be nonzero, but constant.

If we have barotropic or polytropic fluid then p is also constant, so p, is constant. So, p,
constant means p, constant and p, constant means Vpo is 0. If p, is nonzero and Vpo is 0,

then V(po is also 0, that means, ¢, is a constant. So, if Vgoo is 0, now you remember
divergence of something which is 0 is also 0 and that means, that 47G p, is O, that means, p,
itself is 0.

So, we started by saying that we have a uniform medium, so p, is constant, but strictly
nonzero, because the matter should be there. But now, we end up by saying that p, is 0
everywhere. So, what is the problem? The actually the initial unperturbed condition is not
satisfied by a uniform infinite barotropic medium. That means, that up to this unperturbed
equation there is no problem in this equation, but after that this initial unperturbed steady

static condition is not satisfied by a uniform medium.

That means, whenever you make the assumption that p, is constant and nonzero, then the
problem is started, and this known as Jeans swindle. Jeans did not realize the fact, but he was
the first one to address this problem analytically and we will come to this later and he

actually somehow found qualitatively the same result.



So, what is the way out? In fact, one has to first solve the equation and then should consider
the perturbation around it. So, first we have to solve these set of equation and to check that
which type of functions actually satisfies this set of equation, and we will see that p, is

constant and nonzero can never be a solution of this equation. So, that is the proper way.
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But very interestingly, historically, when Jeans finally analyzed his thing, it is found that the
stability condition what Jeans obtained, actually remains qualitatively the same if we do it

properly from a well-defined initial state. So, that is the proper way of treating that.

Then, in case you can just remember Lane—Emden’s equation, actually, in this case one has to
solve Lane—Emden’s equation type of thing, I mean which is for a spherical system this type
of equations can be cast into this Lane—-Emden type of equation, and one can actually see

solution of this problem in a proper manner.

But here for this discussion just for the sake of simplicity, we study the original treatment by
jeans. That means, we will use the Jeans swindle method. Now, after perturbation what
happens? So, ok why we are following this Jeans swindle method, because of two reasons,
first one is that this is historically important to know what Jeans did and finally, it is simple

and gives qualitatively the same result as that of a mathematically properly done method.



Now, after perturbation what happens, v is now becomes v, p is now becoming p, + p; and
p is py + p; and finally, ¢ is also equal to ¢, + ¢,. Again, we obtained the linearized

equations as

aP1

at +pOV (vl) - O

av; 2—> —
Po W = —CsVp1 — poVoy

V2@, = 4nGp,

Where C2 is nothing but the polytropic sound speed. Now, you know this is nothing, but yp".
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Now, we have 3 equations and 3 perturbation variables, one is p;, one is v, one is ¢,. The
p, is actually replaced by the polytropic condition by p,. In the next step, we consider very

simply plane wave solution for all weak perturbations. So, p; will be equal to some p;,

which is the amplitude part e!K7-wt),

This is the plane wave type of solution for the fluctuations. Another way of saying is that as
they are linear then we can think them to be composed of Fourier components and then we

take one of the Fourier components. Another way just to say that, we are assuming that plane



wave solutions. Where, v; will be equal to some v, e!®7=% and then ¢, will be equal to

®10 ei(ﬁ.?—wt).
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Then finally, we replace all these 3 values in all these 3 expressions. This plane waves type of
solutions and we will obtain that

—wpyg + pok. V1o =0 (b)
—pow¥ip = —C&kp1o — pok®io (c)
_k2§010 = 4G pq (d)

So, we finally, have a set of 3 algebraic equations with 3 unknowns p;,, V14, and ¢,,. Of
course, we have 5 unknowns because, v, is a vector quantity, so you know that actually we

have 5 scalar equations and 5 unknowns.
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Now, take a dot product of equation (c) with k, see if we just take k dot in the both sides of

(c), then finally, we eliminate k. U, from (b).
Finally, we get another expression which is the expression number (e) which is
w?p1o = CZk?p1o + pok?@1g (e)

Finally, I have from (d) and (e). | have got rid of v,, variable. So, combining, we get

w?pyg = C2k?p,o — 4G pyp,o and then just rewriting we can get

w? = C2(k* ~ kf) ()
Here, | define this k} such that k} is equal to 4";”0, and this is known as the Jeans wave

vector, and here you can actually see this is nothing but the dispersion relation, for the plane

wave solution corresponding to the perturbation.



(Refer Slide Time: 16:46)

* Clearly whon k Dkp, thon 0 b veal amd +ou
/uask.wu wll vespond 'Hnmal,‘ Lintor wawe mode

Y L K<k, tuw b imaginary ond Hha aystem
v ld +o imsl—abih‘l—z-

% Before diswssinq Farther, Lt uo h-q +o understamd
what leads 4o i+wsl-abil))-q Rore |

% Whanwer the J.MAS”‘# of Lome ngio-m umdor Sa.qr
f]'(""‘"""q is invuaaed; thy $luid pressune g'mdiu\*-
would ty +o vepasr it Bud Bighur d.wc”'q =
shrrder avountaHonal Riold = Rurtbur vico tndoweiin

Now, clearly when k is greater than k;, then w is real, because w? is positive and the system
will respond through linear wave mode. If k is less than k;, then w is imaginary and the

system then will be led to instability and which is called the Jeans instability.
Now, before discussing further, let us try to understand what leads to instability here actually.
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So, whenever the density of some region under cell gravity is increased the fluid pressure

gradient would try to repair it, just like in a normal compressible fluid. But, when the density



gets higher, it creates a stronger gravitational field, self-gravity field will be increased, that is

true by Poisson’s equation.

That leads to the further rise in density, and that actually leads to an instability due to
gravitational collapse. In fact, if the size of the perturbation is greater than the Jeans
2

T then the increase in self gravity

wavelength which is defined as 4; which is nothing but —
J

dominates over the increase of pressure and which is relating to the Jeans instability.
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Now, analogically for the size, we have there is a critical value of mass, for which Jeans

instability takes place only if the mass overcomes or mass dominates over the value of M,

which is nothing but gm’l}po. This is called the Jeans mass.

Now, that M; is equal to

4 ykgT 1
M, = — 5/2 3/2
] 377'- ( Gm ) p01/2
So, M; is proportional to T3/2 and it is also proportional to p—ll/z. Why is that, just try to
0

understand physically? That is my question to you.
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So, in a nutshell, if a perturbation in a uniform gas involves a larger mass than M;, then the
local gravitational collapse will set in and that actually, leads to Jeans instability, thereby
fragmentation of the whole system into peace. So, local gravitational collapse basically
makes the total continuous mass system to be fragmented, if you can understand the whole
picture.
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The stars and galaxies are believed to be the outcomes of such instability, but instead

interstellar mass with hydrogen atomic density, nearly one particle per cubic centimeter at



temperature 100 Kelvin gives a Jeans mass which is of the order of 8 x 1038 gram, which is
much larger than the typical mass of a star, which is of the order of 1038 gram. It is then
assumed that the Jeans instability first breaks the interstellar matters into larger galactic

chunks, and then further breaking by other mechanisms gives starts.

So, this is not just one step, Jeans instability which can gives us the usual stars. But this is a
two-step process. One step is the bigger interstellar matter, then this breaks into chunks,
larger chunks and from that larger chunk that is, of course, by Jeans instability. But then from
larger chunks how they get further fragmentation, that is another interesting issue in

astrophysics. So, that is all about Jeans Instability.

Thank you very much.



