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Hello, and welcome to another lecture of Introduction to Astrophysical Fluids. In previous 

discussion, we showed that how using a very simplistic approach, we can derive or we can 

obtain the criterion for convective instability of a compressible fluid. Now, in this lecture, we 

will derive the conditions or obtain the criterion for the instability against convection, for an 

incompressible fluid and this is known as the famous problem of Rayleigh Benard 

convection. 

Now, Rayleigh Benard convection is important for both the domestic life, where we can see 

the water is boiling and I mean when the water is heated by some burner type of thing or a 

stove, you can see the water is boiling and convective type of motion takes place and also, 

this type of convection and actually proper signature of this type of convection can be seen in 

the solar surface, which we call the Granules. 

Now, how this type of things can be obtained; I mean a bit more analytically, how this type of 

the condition for stability rigor like depending on the various parameters of the system, how 

we can quantify such criterion that we will learn in this lecture. 
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So, Rayleigh Benard convection or which we often called as RBC is important both for our 

household life and also, for astrophysical contexts. So, a gas, which is in general 

compressible, we already have derived very simply the condition for stability against 

convection without formally linearizing the system of the equations in the previous 

discussion. 

We said that in general, we can do same type of analysis by proper calculations but that is a 

bit cumbersome and actually, in order to derive the Schwarzschild criterion of stability, we 

basically do not need to go through all this mathematical rigor. But this is a very analysis 

could lead us to the same conclusion. 
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So, when we saw that if a system is in hydrostatic equilibrium and the system has a very 

important temperature gradient then, the system has a much more tendency to get convicted, I 

mean convictive I mean get unstable against convective motion.  

So, now the thing is that was very good for a fairly compressible fluid. So, we can just part up 

the density and take the mass of the blob of the fluid to another position very rapidly, thereby 

undergoing an adiabatic change. But now the question is what happens if the fluid is a nearly 

incompressible fluid ok? Can we do something like that?  

Well, the answer is not evident and then actually, one has to go through the formal analysis 

following the linearization process. Then, we have to go through linearization. Why? Because 



the simple thing is that if you really remember that when the fluid blog was, I mean a small 

mass of the fluid was displaced from one place to the other, then we said that the blob acts 

like an adiabatic fluid. 

Now, adiabatic means 𝑝 is equal to 𝑘𝜌𝛾 and 𝛾 cannot be any other thing than the 
𝐶𝑝

𝐶𝑣
 which 

has a specific value. Now, if our fluid is incompressible, then the mass of the blob of the fluid 

which is displaced should also be incompressible right. So, this type of adiabatic closure can 

never be applicable to that blob and we all know that for an incompressible fluid, 𝛾 actually 

should be equal to infinity right.  

So, this type of treatment, which we did in the previous discussion cannot be applicable no 

longer, any longer here. Now, the stability analysis of a nearly incompressible fluid was 

formally done for the first time by Rayleigh in the year 1916 and he did the theoretical 

analysis.  

But 16 year before that, Benard actually found the experimental evidences of what Rayleigh 

recovered or Rayleigh found by analysis. So, Benard was the person who experimentally 

developed the field and Rayleigh was the person who theoretically developed the field.  

So, combining both, we now talk in terms of Rayleigh Benard convection. Now, for the 

current Rayleigh Benard problem, first we have to consider a fluid is at rest and the fluid 

should be heated from below. Just think of a kettle which is heated continuously by a burner 

or a stove from below.  

Now, if you just continuously heating the system, actually it is expected that you do not 

change the regulator of the burner. Then, after some time, actually you can assume that the 

heating rate is constant or this is a steady heating rate. So, that is our point of departure. We 

will come to that in a moment. 
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Now, we can actually show the whole system in a schematic way in the figure below. So, 

here you can see that we have a fluid at rest and actually, we consider an incompressible or 

nearly incompressible fluid. So, we sometimes call this as a liquid. So, we have a liquid at 

rest in a container and this liquid is heated from below.  

So, there is a temperature gradient you all know that and the containers height is 𝑑. So, if we 

assume that the fluid is filling up the whole container or the liquid is filling up the whole 

container, then the liquid is also filled up till the height 𝑍 is equal to 𝑑. 

What is 𝑍? 𝑍 is nothing but the vertical upward direction. So, this point where this is heated 

is 𝑍 equal to 0 and this is 𝑍 is equal to 𝑑. So, the burner temperature which is now steady is 

called the 𝑇𝑏 and the upper surface of the liquid which is now kept at room temperature, we 

just call this as 𝑇𝑡.  

So, of course, you can easily understand in case of heating 𝑇𝑏 is much larger than 𝑇𝑡. Now, 

incompressible fluid simply means that it has a negligible variation of density with pressure. 

So, that is something to be understood clearly. Incompressible fluid does not blindly say that 

its density is an absolute constant.  

It is saying that its density is constant only against a change in pressure. But if we heat the 

system, if we change the temperature of the system, then the variation of density is non-



negligible or this is nonzero and that is exactly what we will be considering here, that is the 

density is a function of temperature only. 

Now, as you can see from this setup that liquid at bottom gets heated and become lighter right 

and when it becomes lighter, then it wants to come over the colder liquid above. Because the 

colder liquid is heavier and having greater density.  

So, this colder liquid wants to come down. So, there is an up and down motion and this is 

called the very popular convection motion. You all know that convection motion is the 

macroscopic way of transport of heat right in a medium. 
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Now, what I just said that for an incompressible fluid, the density can only change when the 

temperature is changed that can quantitatively be understood from a very basic kinetic theory 

knowledge, which we already discussed in some of the previous lectures, where we recall that 

𝑝 or the pressure is equal to the number density times the Boltzmann constant times the 

temperature and this density 𝑛 is equal to a function of 𝑝 and 𝑇.  

So, 𝑛 is a function of 𝑝 and 𝑇. If you write now 𝑛 is equal to 
𝑝

𝑘𝐵𝑇
. For incompressible case, 𝑛 

is only a function of 𝑇, and 𝑛 totally uncoupled from the variations of 𝑝. Whenever there is a 

variation in 𝑝, 𝑛 does not care. That is the meaning of incompressibility that 𝑛 is a function of 

𝑇 only.  



So, density changes as temperature changes. How should it change? We all know if you heat 

the system for most of the usual materials, the density should reduce. Because of the 

intermolecular distances increases, so the density should reduce when the temperature 

increases and vice versa.  

So, for a change 𝑑𝑇 in the temperature, the internal energy also changes by 𝑑𝜖 But that is 𝑑𝜖 

is equal to 𝐶𝑝 times 𝑑𝑇. 𝐶𝑝 is nothing but the specific heat of the material.  

Now, if we recall the evolution equation for internal energy, you see always we make 

reference to those basic equations fluid equations which we derived and that is the evolution 

equation for internal energy and this is nothing but 𝜌 [
𝜕𝜖

𝜕𝑡
+ (�⃗�. ∇⃗⃗⃗)𝜖] = ∇⃗⃗⃗. [𝑘∇⃗⃗⃗𝑇]. So, this is the 

conductive term minus 𝑝(∇⃗⃗⃗. �⃗�). Now, for our compressible case, this one is neglected because 

of the continuity equation. 
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So, continuity equation actually says another thing that not only is 𝜌 is indifferent of the 

variations of density, variation of pressure, 𝜌 is also, if temperature is constant, 𝜌 is also 

constant in time and space that is also very important.  

If you go another level higher, you actually can see that for an incompressible fluid the 

material derivative or the Lagrangian derivative of the density also vanishes. So, that means, 

the density of a fluid particle is a constant in time, of course, when the system is not heated. 



Now, using 𝑑𝜖 is equal to 𝐶𝑝 𝑑𝑇, we actually can replace this expression 𝜌 [
𝜕𝜖

𝜕𝑡
+ (�⃗�. ∇⃗⃗⃗)𝜖] =

∇⃗⃗⃗. [𝑘∇⃗⃗⃗𝑇] over here and you can easily find another equation in terms of 𝑇 or the temperature 

in absolute scale of course which is 
𝜕𝑇

𝜕𝑡
+ (�⃗�. ∇⃗⃗⃗)𝑇 = 𝑘∇2𝑇. This 𝑘 is nothing but the thermal 

conductivity by 𝜌 times 𝐶𝑝.  

This is called thermometric conductivity. Some people also call it thermal diffusivity. Why 

thermal diffusivity? Because, if you just think of the system is static then 𝑣 is 0, then 𝑇 is 

simply obeying an equation of diffusion type 
𝜕𝑇

𝜕𝑡
= 𝐾∇2𝑇. So, 𝐾 is another type of diffusivity. 
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Now, we are ready to define an initial state around which we will make a perturbation and 

when initially the system is in steady heating. So, as I said that most of the cases, we will start 

from a steady condition. So, steady heating means the 
𝜕𝑇0

𝜕𝑡
, 𝑇0 is that initial temperature, 

𝜕𝑇0

𝜕𝑡
 is 

equal to 0 and 𝑣 is equal to 0.  

So, ∇2𝑇0 is equal to 0 that means that when the system is in steady heating, there is a special 

gradient of temperature that means, the temperature is a function of space and this is called a 

stratification of the liquid in terms of the temperature. 

That means, you can actually see static layers of fluid liquids of different temperatures and if 

this ∇2𝑇0 is 0, then you can actually see that as we have just assumed that our systems 



heating is only in the vertical direction. So, the temperature gradient can be effectively taking 

place in the 𝑍 direction.  

So, you can actually see that 
𝑑2𝑇0

𝑑𝑧2  is equal to 0. So, that is the initial condition and it simply 

says that 𝑇0 or rather 
𝜕𝑇0

𝜕𝑧
 is equal to some constant and that constant should in general be 

negative because we know that when 𝑍 increases, 𝑇0 must decrease because the heating 

source is at 𝑍 is equal to 0. 

So, it should be some negative quantity, which is minus 𝛽, where we assume 𝛽 is actually an 

algebraically positive quantity. So, 𝑇0 will then be equal to minus 𝛽𝑧 plus Γ. This Γ is the 

constant of integration. Now, at 𝑍 is equal to 0, we know 𝑇0  is nothing but 𝑇𝑏 that is the 

burner temperature or the bottom temperature and so, Γ is nothing but equal to 𝑇𝑏 because at 

𝑍0, 𝑇0 is 𝑇𝑏.  

So, Γ is equal to 𝑇𝑏. Now, at 𝑍 equal to 𝑑, 𝑇0  is equal to 𝑇𝑡 right; 𝑇𝑡  temperature at the top 

that is why then you evaluate 𝛽 which will be simply equal to 𝑇𝑏 minus 𝑇𝑡 by 𝑑. Please check 

all these steps. These are very much easy and can be doable.  
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In general, we are thinking that even the height of the container 𝑑 is actually not very very 

much big or large. So, we can simply say that the 𝑧, which is a displacement I mean some 

arbitrary displacement from 𝑧 is equal to 0 has a moderately small value.  



I mean although, it can be an arbitrary height, but if it is within 𝑑 and 𝑑 itself is not very very 

large. So, this is a small height. That is why I add the point small later. So, it is an arbitrary 

height 𝑧 from the heating ground but reasonably in our study, we are actually considering all 

the moderately small lengths or small heights.  

So, for that arbitrary height, the initial matter density or the liquid density will be 𝜌0 which 

will be equal to 𝜌𝑏[1 − 𝛼Δ𝑇𝑧], where Δ𝑇𝑧 is the temperature difference between the heated 

bottom layer and the height 𝑧 and 𝛼 is nothing but the volume expansion coefficient. 

So, if it is for the volume, then this could have been 𝑉0[1 + 𝛼Δ𝑇] but here for density, it 

should be [1 − 𝛼Δ𝑇𝑧]. Now, what is Δ𝑇𝑧? 𝛽 is the temperature gradient and 𝛽 times 𝑧 and 

that is what 𝛽 times 𝑧 with a minus sign gives us the temperature difference between the 

bottom layer and an arbitrary layer at height 𝑍.  

Now, here, we have just used this linear gradient and just multiplied this with 𝑧. That is the 

reason why I insisted on just adding this thing that they are very small values. All these things 

are actually mathematically not rigorous, but they are done very frequently to get the analysis 

done, first of all in a simplistic manner and then, we do add gradually the sophistications.  

So, finally, 𝜌0 at a height 𝑍, this is the initial density at a high height 𝑍 is equal to 𝜌𝑏[1 +

𝛼βz]. Now, remember that besides the energy equation, momentum evolution equation 

should also satisfy the steady state condition with 𝑣 is equal to 0 and then, like any other 

hydrostatic system under hydrostatic equilibrium in gravity, we can simply say 
𝑑𝑝0

𝑑𝑧
 is equal to 

−𝜌0𝑍𝑔. 

Because if you remember the total setup, the setup is actually vertically standing let us say on 

earth on some places or in a system, where the gravity is actually acting vertically. So, that I 

can draw over here. The gravity is actually vertically acting downward. So, that is the 

direction of the gravity.  

So, 𝑔 is nothing but equal to 𝑔 (−𝑒�̂�) and if that is true, then you can simply write 
𝑑𝑝0

𝑑𝑧
 is 

equal to minus −𝜌0𝑍𝑔. Because 𝑔 does not have any other component in 𝑥 and 𝑦. So, 
𝑑𝑝0

𝑑𝑥
 is 

equal to 0 and 
𝑑𝑝0

𝑑𝑦
 is also equal to 0. So, in the 𝑥 and 𝑦 directions, 𝑝0 is a constant throughout. 
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Now, this is all about the initial configuration which is a steady flow with a steady heating 

and moreover, we are talking about not a flow but at steady state condition at rest. So, this is 

a steady state hydrostatic condition. Now, we want to perturb the whole system, we want to 

perturb it very weakly with respect to the initial steady state.  

The question is how to do that. Can we do that? One very common process is to alter the rate 

of the steady heating. So, you now, play with the regulator of the burner and let us say I am 

just increasing the regulator of the burner so that the heating rate is increased. 

Then, 𝑇0(𝑧) will now be coming some 𝑇(𝑧). So, 𝑇0(𝑧)  was the temperature at 𝑇 is equal to 

0, I mean time is equal to 0 and now, at any arbitrary time, the temperature at a layer, at a 

distance, at a height 𝑧 from the bottom is given by simply 𝑇 as a function of 𝑧.  

And this 𝑇(𝑧) can be written as 𝑇0 + 𝑇1. So, this 𝑇1 is nothing but the first order or weak 

perturbation over 𝑇0 and what about 𝜌𝑧? 𝜌𝑧 is nothing but 𝜌𝑏[1 + 𝛼𝛽𝑧] that was the initial 

value −𝛼𝑇1 because of this perturbed temperature and finally, you can write 𝜌𝑧 is nothing but 

equal to 𝜌0(𝑧) − 𝜌𝑏𝛼𝑇1. 
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And finally, for the perturbed pressure 𝑝(𝑧) is equal to 𝑝0(𝑧) − 𝑝1(𝑧). Again, this is very 

weak. This is weak, we can easily understand because 𝑇1 itself is weak. So, this is also weak 

with respect to 𝑝0. Now, our system is perturbed. So, it is assumed that the system is no 

longer in static equilibrium.  

So, if the velocity is now perturbed from 0 to some 𝑣1 that 𝑣1 should not be equal to 0; 𝑣1 

should be and actually must be nonzero. Then, with incorporating all these quantities, in 

terms of its initial value plus its perturbed value finally, the momentum evolution equation 

can be written as (𝜌0 − 𝜌𝑏𝛼𝑇1) [
𝜕

𝜕𝑡
+ (𝑣1⃗⃗⃗⃗⃗. ∇⃗⃗⃗)] 𝑣1⃗⃗⃗⃗⃗ = −∇⃗⃗⃗(𝑝0 + 𝑝1) + (𝜌0 − 𝜌𝑏𝛼𝑇1)g⃗⃗ + 𝜇∇2𝑣1⃗⃗⃗⃗⃗. 

Here, somehow, we have taken into account the viscous effect.  
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Because, most of the cases for the liquids the viscous effect is non negligible and 𝑔, we just 

say that we are in such a system that 𝑔 does not change much and so, there we neglect. We 

neglect the perturbation in the 𝑔 field. Now, we neglect in this equation, we neglect routine I 

mean this is a routine process.  

The second order contribution [(𝑣1⃗⃗⃗⃗⃗. ∇⃗⃗⃗)]𝑣1⃗⃗⃗⃗⃗ and we also say that for the zeroth order 

contribution 𝑔 is equal to minus gradient of ∇⃗⃗⃗𝑝. So, that is the initial condition plus there is 

another thing which is super important here. This is called the Boussinesq approximation and 

this is the approximation with this analysis becomes much simpler otherwise, it would have 

been much lengthier and more complex. 

What is that Boussinesq approximation? This simply says that all I mean since we are in 

nearly incompressible domain, the density variation only considered for the buoyancy term 

Because if we do not consider the density variation this one, when we just say that this total 

term is almost equal to 𝜌0, then this 𝜌0𝑔 will exactly be nullifying minus ∇⃗⃗⃗𝑝0 and so, there 

will be no buoyancy force.  

Actually, the convection cannot be explained then as you can easily understand. Because as I 

said the convection is nothing, but the interplay of a vertical displacement of different type of 

fluid. So, one is heated and gets lighter, but still in the lower level and one is colder, less 

heated, heavier and still in the upper level. So, this type of convective instability is there. 



So, the lighter fluid moves up only because of buoyancy right and if the buoyancy force is 

absent, then the whole story is destroyed. If the buoyancy force is absent, then we cannot do 

anything to explain the convective motion, that is why we cannot neglect the density 

variation here.  

On the other hand, the density variation here does not play a much important role because 

even with this one, the total thing because the total thing is almost equal to 𝜌0. So, in this part 

we just neglect this increment. 

So, the method is very simple. Here the zeroth order term and the first order term both are 

intact, that is why I can neglect the first order contribution in front of the zeroth order 

contribution. Here the first order contribution the zeroth order contribution is nullified by the 

zeroth order contribution over here, that is why I have to let the first order contribution 

survive.  

Simply this and sometimes you can actually say 𝜌0 and 𝜌0 is also reasonably very near to 𝜌𝑏. 

And what is the advantage of using 𝜌𝑏? Because 𝜌𝑏 is a constant, 𝜌𝑏 is the burner 

temperature at in the initial state. 

As a result, the momentum equation becomes finally. So, here you can see when I say about 

the perturbation of something like this, I said that the burner is now I have increased the 

regulator of the burner, this type of thing. That means, also I can actually change this 𝜌𝑏, but 

where I am talking about this 𝜌𝑏, this means the 𝜌𝑏 in the initial state.  

Of course, in even without touching the burner, we can actually make other heating source or 

other some source of energy which can heat up the system as well. Now, as a result, finally, 

the momentum evolution equation becomes 

 𝜌𝑏 
𝜕𝑣1⃗⃗ ⃗⃗⃗

𝜕𝑡
= −∇⃗⃗⃗𝑝1 − 𝜌𝑏𝛼𝑇1 + 𝜇∇2𝑣1⃗⃗⃗⃗⃗                                                                      (1) 

So, finally, we only have this term which is in the first order, this term ∇⃗⃗⃗𝑝1 the first order 

pressure gradient, the first order body force term, which is nothing but the buoyancy term and 

the viscous term, which is also of the first order. Now, let us linearize in the same way the 

energy equation.  



So, the variation is only considered in the direction of 𝑧. So, we can just simply write �⃗�.∇⃗⃗⃗ as 

𝑣1𝑧𝑑𝑧 and here, within the bracket you have 𝑇1 + 𝑇0 is equal to 𝑘∇2, then the total 

temperature is again 𝑇1 + 𝑇0. Now, we neglect 𝑣1𝑧
𝑑𝑇1

𝑑𝑧
 because of the second order problem 

and 
𝑑𝑇0

𝑑𝑡
 is equal to 0 due to the initial steady state condition.  

Also remember due to this reason in the steady state, we also had ∇2𝑇0 is equal to 0. So, these 

three things. So, this is neglected due to being second order term.  
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So, finally, the linearized equations energy equation becomes 

𝜕𝑇1

𝜕𝑡
= 𝑣1𝑧𝛽 + 𝑘∇2𝑇1                                            (2) 

So, finally, we can see that we have this equation 1 and 2. So, we have 𝑣1, we have 𝑇1 and 

actually we have 𝑝1 as well and here, we also have 𝑣1𝑧. So, we have actually roughly three 

unknowns’ 𝑣1, 𝑝1 and 𝑇1. One simple trick can simplify the life just by taking double curl of 

this equation 1 and if you take that and if you note that double curl of any vector is equal to 

gradient of divergence of that vector minus Laplacian of that vector and here, since the 

velocity vector is divergence less double curl of the velocity vector will simply be equal to 

minus of Laplacian of the velocity vector. 



If you correctly follow that identity and do the algebra carefully, they get combined to give 

𝜕∇2𝑣1𝑧

𝜕𝑡
= 𝛼𝑔 (

𝜕2𝑇1

𝜕𝑥2 +
𝜕2𝑇1

𝜕𝑦2 ) + 𝜗∇4𝑣1𝑧                                                                              (3) 
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For 𝑣1𝑥 and 𝑣1𝑦, we simply have a diffusion equation without any impact of temperature that 

you can also check. So, from equation 2 and 3 finally, we can evidently see that 𝑇1 and 𝑣1𝑧 

are the two independent variables of the problem. So, finally, if you have equation 2 and 3, 

you can easily see that you have 2 equations and 2 unknowns; one is 𝑇1 and one is 𝑣1𝑧 that is 

even in more interesting. I mean handleable. 
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So, considering the nature of the problem, so one can actually blindly propose for various 

type of solutions. We will here try to do some trial type of solutions of different of several 

types. So, I mean for this part of the discussion, we have finally seen that I mean for the total 

Rayleigh Benard convection problem now gets reduced to 2 equations with 2 unknown 

variables. The more detailed discussion about the solution of the system will come in the next 

discussion. 

Thank you.  


