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Hello, and welcome to another session of Introduction to Astrophysical Fluids. In this 

session, we will discuss a very interesting topic of Astrophysics that is the topic of de Laval 

nozzle and the corresponding physics of extragalactic jets. 
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So, already in the previous discussions, we have discussed the propagation of perturbations in 

compressible gases, and we have seen that if we are considering small perturbations with 

respect to some initial stable configuration of the fluid then the fluid I mean if we try to 

perturb or damage any quantity of the fluid for example, pressure, velocity, density then the 

fluid responds to the perturbation in the terms of the linear modes. 

That is for a normal compressible fluid, this mode is known as the sound mode or the 

acoustic mode. However, if the perturbation is large enough, then non-linear linearity is no 

longer valid and non-linearity comes into play, and we have seen that there are development 

of discontinuities in the flow and then we discuss about several aspects of what we call the 

shock wave. 
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Now, in this discussion, we will discuss not the flow of any perturbation, but the propagation 

of any perturbation, and the flow of a compressible fluid itself in one dimension. What is the 

meaning of one dimension? That does not say that the total universe is one dimension that 

means, the fluid is flowing in 3D world or 3D universe, but the flow direction is effectively 

along one direction. 

For example, when a fluid is flowing in a pipe with varying cross section so, that is a very 

simple and very fundamental problem of 1D fluid flow. Then how should we determine the 

density, the pressure, the velocity of the fluid at different parts of the pipe is a very well-

known problem of fluid dynamics. 

Now, in astrophysics, this type of problem is very important because of the understanding of 

the mechanism of extragalactic jets. I am coming to that later, but before that let me first 

address this problem from a fluid dynamics point of view and then we will go to relate this to 

the astrophysical observation. 

So, let us just consider a flow which is effectively one dimensional. That means, the pipe is 

looks like this, let us say here I have already done some very specific structure of the pipe, 

but let us say the pipe has this type of thing whatever I mean this. So, in some part this is 

narrower, in some part this is wider and the fluid is flowing throughout the pipe and mostly 

along 𝑥 direction. 



So, there are motions which are oblique to 𝑥 direction, but in our case, we are just saying that 

the pipes cross section 𝐴 which is the cross section of the pipe perpendicular to the flow that 

varies very slowly with 𝑥, and that is why all these transverse components where whether we 

are talking about 𝑣𝑦 or 𝑣𝑧, they are actually very, very small with respect to 𝑣𝑥 and that is 

why the flow is effectively one-dimensional. 
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So, the flow is not strictly one dimensional, but this is the case of effective one-dimensional 

play flow. Now, we take a steady adiabatic gas flowing in a pipe. Now, when we are talking 

about steady flow that means, any explicit dependence on time will be vanishing,  
𝜕

𝜕𝑡
 will be 

equal to 0 and 𝑝 will be equal to 𝑘𝜌𝛾, but this 𝛾 is not arbitrary polytropic index. 

But this 𝛾 is equal to 
𝐶𝑝

𝐶𝑣
 that is equal to, if you know this formula that for adiabatic index 𝛾 

should be written as 1 +
2

𝑓
, where 𝑓 is the number of degrees of freedom. So, if we are 

considering the monoatomic gas then 𝑓 is 3. So, 𝛾 will be simply equal to 
5

3
. 

If we are talking about diatomic gas which is of the shape of a dumbbell two atoms are like 

connected with each other by some rigid rod type of thing then the number of degrees of 

freedoms are 5 and 𝛾 will be simply 
7

5
. So, these things I hope you all know from your 

knowledge of thermodynamics. 



So, if we have such an adiabatic system and that is completely reasonable because we will 

see that we will try to relate this to a process which is very, very quick. So, once again 

adiabatic closure is a very good closure. 

Quick means, when the phenomena is very quick then the total system does not have enough 

time to establish thermal equilibrium with the surroundings by the sufficient exchange of 

heat. So, if the system is very quick then we can actually assume that the total heat content is 

already confined inside the system. So, that gives the adiabatic nature of the process. 
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So, if we have this then 
𝑑𝑝

𝑑𝑥
 is equal to 

𝛾𝑝

𝜌

𝑑𝜌

𝑑𝑥
 that is very easy to see. You can just see that 

𝑑𝑝

𝑑𝑥
 is 

equal to 𝛾𝜌𝛾−1𝑘
𝑑𝜌

𝑑𝑥
 and this 𝛾𝜌𝛾−1𝑘 is nothing but 

𝛾𝑝

𝜌
. You can simply replace the value of 𝑝 

over there, so, you can finally have 

𝑑𝑝

𝑑𝑥
= 𝑐𝑠

2 𝑑𝜌

𝑑𝑥
                                                                     (i) 

Now, we know 𝑐𝑠
2 is nothing but the adiabatic sound speed and this is equal to 

𝛾𝑝

𝜌
. Here, we 

are talking about steady flow. So, all the fluid variables, they are not explicitly depending on 

time and effectively 1D flow. 



So, there is also no dependence on 𝑦 or 𝑧 directions. So, finally, 
𝜕

𝜕𝑥
 and 

𝑑

𝑑𝑥
 will be the same 

thing. So, 𝑥 is the only variable which is the only independent variable in the problem. All the 

fluid variables are expected to depend only on 𝑥 for this problem. 
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Now, we also know that is one equation for our interest. Now, we also know that continuity 

equation for this problem comes out to be ∇⃗⃗ . (𝜌�⃗⃗� ) is equal to 0 and if you just consider that 

this thing to be integrated over the whole volume this is also 0. This is nothing but the mass 

continuity equation and the mass conservation equation and if you remember that this total 

thing is nothing but 
𝜕

𝜕𝑡
∫𝜌𝑑3𝜏. 

So, this should be equal to 0, otherwise the mass is not conserved. Since we have assumed 

that there is no source or no sink of material inside the flow field, then we can easily apply 

this continuity equation and by Gauss’s divergence theorem can be given by this the surface 

integral 𝜌𝑣 . 𝑑𝑠  is equal to 0. 

Now, we have a pipe and inside the pipe we have a fluid flow. Now, we take any imaginary 

volume element type of thing inside the fluid. So, if we take arbitrary volume, the surfaces 

will be also covering or surrounding the volume will also be arbitrary. 

I mean here, in this case arbitrary means they should be always normal to the pipe flow or the 

fluid flow, but they should be arbitrarily placed. So, if I take, for example, this volume 

element then the surfaces will be this surface, this surface, this surface and this surface if we 



take another volume element like this then the surface will be this one, this one, this one and 

this one. 

Now, if you remember that the surface area vectors are basically the vectors which are 

normal to the surface. So, these are the surface area vectors. So, because the flow is 

essentially along 𝑥 direction, the dot product of the velocity with these two surfaces vectors 

will vanish, but only with these two surfaces will survive. 

As they are 0, so, always actually you can say that for the one surface like this will be exactly 

equal and opposite to the other surface. So, that is simply saying that the mass of fluid which 

is entering through one surface must be going out through the opposite surface. 

Finally, if you can take actually arbitrary volume element and that is true for all the cross-

sectional surface which are normal to the fluid flow this type of thing. So, if we have some 

fluid flow like this, then this one or this one we have two normal surfaces, and you can do it 

for any arbitrary surface which is perpendicular to the flow that means, this type of surface. 

Finally, you can show that we can write in a general manner that 𝜌(𝑥)𝑣(𝑥)𝐴(𝑥) is equal to 

constant for any 𝑥 inside the fluid flow. Now, if we differentiate this equation with respect to 

𝑥, because 𝑥 is the only independent variable we can actually write as 

1

𝜌

𝑑𝜌

𝑑𝑥
+

1

𝑣

𝑑𝑣

𝑑𝑥
+

1

𝐴

𝑑𝐴

𝑑𝑥
= 0                                                  (ii) 

It is zero because this constant when gets differentiated with respect to 𝑥 gives 0. So, we now 

have two equations, equations (i) and (ii). 
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Now, in this case, we neglect again the body force and the viscosity actually you will see in 

most of the cases of very high energetic astrophysical phenomena, we neglect body force and 

the viscosity, and then our momentum evolution equation is no longer Navier Stokes, but it is 

an equation called Euler’s equation that means, only the inertial term and the pressure 

gradient term. 

So, we can write that 

𝑣
𝑑𝑣

𝑑𝑥
= −

1

𝜌

𝑑𝑝

𝑑𝑥
= −

𝑐𝑠
2

𝜌

𝑑𝜌

𝑑𝑥
                                                             (iii) 

So, this is the pressure gradient term. So, finally, then we have another relation equation (iii) 

relating this one 
𝑑𝑣

𝑑𝑥
 and 

𝑑𝜌

𝑑𝑥
. 
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So, in this equation (ii), if you remember we can eliminate 
1

𝜌

𝑑𝑝

𝑑𝑥
 by 𝑣

𝑑𝑣

𝑑𝑥
 and you will see 

finally, you can have this total expression to be written like this  

−
𝑣

𝐶𝑠
2

𝑑𝑣

𝑑𝑥
+

1

𝑣

𝑑𝑣

𝑑𝑥
= −

1

𝐴

𝑑𝐴

𝑑𝑥
. 

Now, if you just take everything inside the bracket in the left-hand side this will give you  

(1 − 𝜇2)
1

𝑣

𝑑𝑣

𝑑𝑥
= −

1

𝐴

𝑑𝐴

𝑑𝑥
                                                      (iv) 

What is 
𝑣

𝐶𝑠
2? This is nothing but the local Mach number. Local Mach number means, the Mach 

number at every point because 𝑣 is the velocity at every point, 𝐶𝑠 is also the sound speed of 

every point at each point. 

So, this is local velocity by local sound speed gives us local Mach number. So, this actually 

changes as x changes. So, this is the final and the most important relation for this problem. 

Now, remember that if the flow is subsonic, just the calling of the definition of subsonic and 

supersonic flows, we know that 𝑣 should be less than 𝐶𝑠. 

So, your Mach number will be less than 1, and in that case, if we are talking about the fluid 

which is mostly flowing along the 𝑥 direction, so, 𝑣𝑥 is greater than 0 and in that case, you 



can say that 
𝑑𝑣

𝑑𝑥
. So, this term 𝜇 is less than 1, that means, this term 

𝑑𝑣

𝑑𝑥
 is greater than 0, this 

𝑑𝐴

𝑑𝑥
 

is also greater than 0. 

So, 
𝑑𝑣

𝑑𝑥
 and 

𝑑𝐴

𝑑𝑥
, they are related with opposite signs because something positive times 

𝑑𝑣

𝑑𝑥
 is 

equal to minus something positive time 
𝑑𝐴

𝑑𝑥
. So, 

𝑑𝑣

𝑑𝑥
 and 

𝑑𝐴

𝑑𝑥
 they have opposite signs and we 

claim that this is very normal. 
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Why? Because if 
𝑑𝑣

𝑑𝑥
 and 

𝑑𝐴

𝑑𝑥
 they are with opposite signs then 

𝑑𝑣

𝑑𝐴
 which is nothing but 

𝑑𝑣

𝑑𝑥
 by 

𝑑𝐴

𝑑𝑥
 

is less than 0 because they have opposite signs. So, 
𝑑𝑣

𝑑𝐴
 is negative. That means velocity goes 

down when cross sectional area increases. 

It simply says that the flow will be faster for narrower regions and slower for wider regions 

that we actually see in practice that in a pipe when the cross-sectional area is less than the 

fluid velocity is very larger and here the cross-sectional velocity is smaller, right. So, that is 

the normal case, but now, we see that this is true only when the flow is subsonic. 
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But if the flow is supersonic that is, Mach number is greater than 1 or the velocity is greater 

than sound speed then both 
𝑑𝑣

𝑑𝑥
 and 

𝑑𝐴

𝑑𝑥
 will have the same sign, why is that? Because then this 

will have negative sign, this is always positive. So, this negative and this negative will cancel 

each other and then 
𝑑𝑣

𝑑𝐴
 will also be equal to 

𝑑𝑣

𝑑𝑥
 by 

𝑑𝐴

𝑑𝑥
 which will now be greater than 0 because 

they will have the same sign. 

It simply means that the flow velocity is higher for wider regions of the pipe and the flow 

slows down for the narrower part. That is something a bit counter intuitive for us and that is 

the whole essence of this current theory. 
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So, that is because, till now we have always discussed in the framework of fluid dynamics 

with the subsonic flows. For supersonic flow, this is the normal case that means, the wider 

cross section the fluid will have acceleration, and greater velocity the narrower region the 

fluid will have lower velocity. So, let us now try to make an arrangement where subsonic 

flow enters in a tube or a pipe, but comes out as a supersonic flow. 
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So, of course, such a flow has to be accelerated in between otherwise it is not possible. If it 

enters like a subsonic flow and comes out as a supersonic flow then in between, the flow 



should be or must be accelerated otherwise how can it be, and that means, that the flow 

should be in between at some point should be transonic. 

That means, a Mach number is actually transiting from something less than 1 to greater than 

1 and that is why it should pass through the value 𝜇 exactly equal to 1 which is the transonic 

case. That means, the velocity is exactly equal to the sound speed, and for that point what 

happens? 

If the fluid velocity is equal to sound speed, 𝜇 is 1 and this is 0. So, even 
𝑑𝑣

𝑑𝑥
 is non 0, 

𝑑𝐴

𝑑𝑥
 is 0. 

So that means, that the system will have an area where the cross-sectional system in the pipe 

or the tube should have a part for which the cross-sectional area is effectively the same over a 

range of 𝑥. 

So, 
𝑑𝐴

𝑑𝑥
 simply says that the area has some extremum value over 𝑥, and it is then quite evident 

that we need to use a flow path which has the following structure. So, the fluid first enters 

into this wider region and then the area basically comes down to its minimum value giving 

birth to this narrowest region.  

After that this fluid will be again going to a part where the cross-sectional area is greater, and 

then you will see that what happens? That first the fluid was subsonic while it was entering 

and then it was accelerating only because that from wider to narrower region, so, simply it 

got accelerated because it was by going to some narrow regions.  

After passing through this region with constant cross section finally, it is again going to 

another part. Now, so, in this part this is now becoming supersonic, and now, actually when it 

comes to another part where the cross-sectional area is again increasing then it again 

accelerates itself right and because now this is supersonic flow. 

So, finally, the flow as a result accelerates throughout the whole nozzle and this specific 

construction is known as de Laval nozzle, and de Laval nozzle is the most promising model 

for the aspects I mean extragalactic jets till now. Of course, there are subtleties, but being 

simplistic this is the most promising model. 
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Now, in reality, astronomers now, coming to some astrophysical connection that astronomers 

have indeed observed many galaxies which squares out huge gas jets and these are known as 

the extragalactic jets. Now, these gas jets usually emit radio waves and therefore, they are 

detected by radio telescopes. 

So, only there is one exception that within our knowledge that only M87 galaxy is found to 

have optical jet otherwise mostly they have radio jets. The size of the extragalactic jets is 

often much larger than the size of the galaxy generating it, and sometimes this is so large that 

the size is of the order of mega per sec and which is even much larger than the parent galaxy 

and they are in general the largest coherent fluid flows which are visible in the whole 

universe. 

So, for most of the cases this is confirmed that the extragalactic jets are highly supersonic in 

nature. The jet gets accelerated while getting out of the galaxy to the ambient medium of less 

pressure and greater available cross-sectional area. So, as you can easily understand that I 

mean how the jet is highly supersonic. 

So, we can easily use our theory which we have just seen previously that this type of 

supersonic flow will be accelerated whenever it will go to surrounding or a medium with less 

pressure and greater available cross section, and that is why when this type of extragalactic 

jets they are spitted out of the galaxy to a very dilute ambient medium, I mean that is the 



intergalactic medium then this flow is also accelerated. So, this is something which we 

already know. 
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Now, what basically happens inside and how this acceleration happens? It is not really 100 

percent known, but a systematic plausible theory of this extragalactic jets were for the first 

time proposed by Bland ford and Rees in the year 1974, and they simply say that the gas 

which constitutes the jet is first produced by some mechanism that we do not know much 

clearly near the center of the galaxy. 
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Now, you see this figure. So, the jet is produced here or generated here near the center of the 

galaxy and then the gas tries to pave its way towards two exhausts on the two diametrically 

opposite side of the galaxy where the thickness is small. So, exactly this type of gas highly 

energetic and light gas they will try to pave their way out to get out of this galactic medium to 

the outer medium and they will search for the paths where there is least resistance. 

So that means, they will search for the path where the thickness is small. So, first what 

happens? After just generation it is subsonic and then when it enters into the galactic medium 

which is quite dense and the pressure is high then first it gets accelerated because it is almost 

like entering from a wider region to a narrower region. 

When it finally, becomes supersonic by acceleration then it finds its path of exhaust, it again 

accelerates because of the de Laval nozzle principle. So, finally, when it exhausts to the dilute 

intergalactic medium this becomes highly supersonic and accelerating. 

However, we know very well nowadays that Bland ford and Rees model, they are not the best 

one because of various things. One of the reasons is that the size of the de Laval nozzle which 

can be estimated for several type of observed extragalactic jets are actually not realistic for 

the corresponding galaxy sizes. 

Then the people actually thought that the efficiency for the efficient acceleration of the 

extragalactic jets, actually there is an indispensable role of the magnetic field. So, that part is 

another domain, but at least for being inside the domain of the neutral fluids a very simplistic 

model of one-dimensional compressible flow. 

We could show how the system, how a subsonic flow first gets accelerated while entering to 

a region or zone of higher pressure, and then it first becomes supersonic and then it again gets 

accelerated whenever to go to another region with less density or less pressure. So, that is the 

moral about this theory. 

So, in the next lecture we will discuss something about the instabilities of the astrophysical 

medium. 

Thank you very much. 


